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1. Introduction

2. Solutions to Chapter 2

Exercise 2.1. Suppose each of K classes has an associated target tk, which is a vector of
all zeros, except a 1 in the k-th position. Show that classifying to the largest element of ŷ
amounts to choosing the closest target mink ∥tk − ŷ∥, if the elements of ŷ sum to 1.

Solution. The elements of ŷ must be nonnegative and sum to 1. Hence, each entry of ŷ is
less than or equal to 1. It follows immediately that the largest entry of ŷ will be the closest
entry to 1. ■

Exercise 2.2. Show how to compute the Bayes Decision boundary for the simulation example
in Figure 2.5.

Comment. The sampling procedure used to obtain the points in Figure 2.5 is described in the
following sentences (summarized from paragraph 3 of Section 2.3.3 of [2]). First, 10 means
(points, to be used as means later) b1, . . . , bk were drawn randomly from N

(
(1, 0)⊤, I

)
and

labeled BLUE. Then, 10 means o1, . . . , o10 were drawn from N
(
(0, 1)⊤, I

)
and were labeled

ORANGE. Then, 100 blue points were generated as follows. Choose a bk uniformly from
{b1, . . . , b10}, then choose a point from N (bk, I/5). 100 orange points were obtained similarly,
according to the orange means o1, . . . , ok, with the same variance. ■

Solution. By definition, the Bayes decision boundary for this example is{
(x, y) ∈ R2 : P ((x, y) ∈ BLUE) = P ((x, y) ∈ ORANGE)

}
.
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Hence, this is given by the set of points x = (x, y)⊤ satisfying

1

10

10∑
k=1

1

2π
√

det(I/5)
exp

(
1

2
(⟨x− bk, 5I(x− bk)⟩)

)

=
1

10

10∑
k=1

1

2π
√

det(I/5)
exp

(
1

2
(⟨x− ok, 5I(x− ok)⟩)

)
.

We can cancel all constants outside of exp and use that the inside is simply 5
2
(∥x− bk∥2) to

obtain that the decision boundary can be calculated as the solution to
10∑
k=1

exp

(
5

2
∥x− bk∥2

)
=

10∑
k=1

exp

(
5

2
∥x− ok∥2

)
.

Given {bk}, {ok}, one can numerically compute the solutions to the above equation. ■

Exercise 2.3. Derive equation (2.24)

Comment. (2.24) describes the median distance from the origin to the closest data point,
where N points are drawn uniformly from a p-dimensional ball centered at the origin. (2.24)
is given by

d(p,N) =

(
1−

(
1

2

)1/N
)1/p

.

■

Solution. Let XN denote the random variable representing the distance to closest point in
this setting. By definition of median, we wish to find d such that

P (XN ≤ d) ,P (XN ≥ d) =
1

2
.

If the closest point were a distance d away, then N points were drawn from a volume of
Cp − Cpd

p, where Cp denotes the constant such that Cpr
p is the volume of a p-ball with

radius r. Since the trials are independent, this occurs with probability(
1− Cpd

p

Cp1p

)N

= (1− dp)N .

Setting this equal to 1/2 and solving yields the desired result. ■

Exercise 2.4. The edge affect problem discussed on page 23 is not peculiar to uniform
sampling from bounded domains. Consider inputs drawn from a spherical multinormal dis-
tribution X ∼ N (0, Ip). The squared distance from any sample point to the origin has χ2

p

distribution with mean p. Consider a prediction point x0 drawn from this distribution, and
let a = x0/∥x0∥ be an associated unit vector. Let zi = a⊤xi be the projection of each training
point along a.
Show that the zi are distributed N (0, 1) with expected squared distance from the origin 1,
while the target point has expected squared distance p from the origin.
Hence for p = 10, a randomly drawn test point is about 3.1 standard deviations from the
origin, while all other training points are on average one standard deviation along a. So
most prediction points see themselves as lying on the edge of the training data.
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Solution. After dividing by ∥x0∥, it is WLOG assume ∥x0∥2 = 1. Since xi = ((xi)1, . . . , (xi)p)
⊤ ∼

N (0, Ip), we have each (xi)j ∼ N (0, 1). Hence,

zi =

p∑
j=1

(x0)j(xi)j

is normal, with mean E(zi) =
∑p

j=1(x0)jE(xi)j = 0, and variance
∑p

j=1(x0)
2
j · 12 = 1 (since

∥x0∥ = 1). This shows zi ∼ N (0, 1). But as is stated, the expected squared distance of xi is
p. Plugging in for p = 10, a random point is a distance of 10 away from the origin, which is
about 3.1×

√
10 ≈ 10. I.e., a random point is about 3.1 standard deviations from the origin,

but its projection along x0 has an expected squared distance of 1. ■

Exercise 2.5. (a) Derive equation (2.27). The last line makes use of (3.8) through a con-
ditioning argument.
(b) Derive (2.28), making use of the cyclic property of the trace operator, and its linearity.

Comment. Note that the setup for these equations is the following. We are told that the
true solution is linear:

Y = X⊤β + ϵ,

where X is a random variable in Rp, and ϵ ∼ N (0, σ2). The model we fit by is linear,
minimizing square distance. We denote by ŷ0 our prediction point given an arbitrary tst
point x0. We organize all the training data-points {x1, . . . , xN} into an N × p matrix X.

Note that ŷ0 is given by ŷ0 = xT0 β̂ = x⊤0 β +
∑N

i=1 ℓi(x0)ϵi, where ϵi is the ϵ associated
to the i-th data point and output yi, and ℓi(x0) denotes the i-th component of the vector
X(X⊤X)−1x0. This can also be written

ŷ0 = x⊤0 β + x⊤0 (X
⊤X)−1X⊤ϵ⃗,

where ϵ⃗ = (ϵ1, . . . , ϵN)
⊤. EPE at a datapoint x0 is defined to be ET (E((y0 − ŷ0)2|x0, T )),

where T denotes the set of training data. ■

Solution.
(a) Notice that

(y0 − ŷ0)2 =
(
(y0 − x⊤0 β)2 − (x⊤0 β − ŷ0)

)2
.

Consider the conditional expectation of the above given x0, T . Expanding, we obtain

E((y0 − ŷ0)2|T , x0) = E((y0 − x⊤0 β)2|T , x0)
+ 2E(y0 − x⊤0 β|T , x0)E(x⊤0 β − ŷ0|T , x0)
+ E((x⊤0 β − ŷ0)2|T , x0).

Notice that (y0−x⊤0 β)2 = (x⊤0 β+ϵ−x⊤0 β)2 = ϵ2, where ϵ ∼ N (0, σ2). After taking the expec-
tation w.r.t T , we see that the first term is by definition σ2. Similarly, the second term, after
taking the expectation w.r.t. T , is 0, since ET E(y0−x⊤0 β|T , x0) = ET E(ϵ|T , x0) = 0, and the
two cross terms are independent (Indeed, ϵ, the noise from new observation y0, is indepen-

dent from
∑N

i=1 ℓi(x0)ϵi, errors on the training data). For the final term, ŷ0 is an unbiased

estimator of x⊤0 β. Indeed,
(
ET (ŷ0)− x⊤0 β

)2
=
(
ET
∑N

i=1 ℓi(x0)ϵi + ET (x
⊤
0 β)− x⊤0 β

)2
=

(0 + x⊤0 β − x⊤0 β)2 = 0. Hence, using the standard variance-bias decomposition, we see that
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the final term is Var(ŷ0|x0, T ). Taking the epxectation w.r.t. T and putting everything
together, we finally see that

EPE(x0) = σ2 +VarT (ŷ0). (2.1)

It remains to compute the variance VarT (ŷ0). For convenience, denote X(X⊤X)−1 by

X(X⊤X)−1 := AX ∈ RN×p.

Notice that ET (ŷ0) = x⊤0 β + ET
(
(AXx0)

⊤ϵ⃗
)
= x⊤0 β + 0 (since the expectation w.r.t. T

contains an expectation over ϵ, which vanishes, as well as one over X). Hence,

VarT (ŷ0) = ET
(
x⊤0 β + (AXx0)

⊤ϵ⃗− x⊤0 β
)2

= ET
(
(AXx0)

⊤ϵ⃗
)2

= ET
(
x⊤0 A

⊤
X ϵ⃗⃗ϵ

⊤AXx0
)
.

Taking the expectation associated to the noise first, we get σ2IN×N . Plugging the above into
Equation (2.1), we obtain

EPE(x0) = σ2 + ET
(
x⊤0 (X

⊤X)−1x0
)
σ2,

which was to be demonstrated.

(b) Using that X⊤X→ NCov(X) for large N , we have that

EPE(x0) ≈ σ2 +
x⊤0 Cov(X)x0

N
σ2 = σ2 +

σ2

N
tr
(
x⊤0 Cov(X)−1x0

)
,

where we have inserted trace onto a 1 × 1 quantity. Using that tr(AB) = tr(BA), we have
tr(x⊤0 (Cov(X))−1x0) = tr(x0x

⊤
0 Cov(X)−1). By linearity of the trace and expectation, we

can exchange Ex0 with tr. Hence, taking the expectation, since Ex0x0 = 0, we have

Ex0EPE(x0) ≈ σ2 +
σ2

N
tr
(
Cov(x0)Cov(X)−1

)
.

Using that Cov(x0)(Cov(X)−1) = Ip, the p× p identity matrix, we see that

Ex0EPE(x0) ≈ σ2 +
pσ2

N
.

■

Exercise 2.6. Consider a regression problem with inputs xi and outputs yi, and a param-
eterized model fθ(x) to be fit by least squares. Show that if there are observations with tied
or identical values of x, then the fit can be obtained from a reduced weighted least squares
problem.

Solution. Given N data points, fitting by least squares amounts to minimizing

minθ

N∑
i=1

(yi − fθ(xi))2

Suppose out of the N inputs {xi}, there are N ′ < N unique inputs. For each unique

j = 1, . . . , N ′, there are kj possible different outputs, where
∑N ′

j=1 kj = N . Denote by x′ij
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the j-th copy of the i-th unique input (i.e., 1 ≤ i ≤ N ′, 1 ≤ j ≤ ki). Similarly, denote by y′ij
the true output for xij. Then we can rewrite the above minimization problem as

minθ

N ′∑
i=1

ki∑
j=1

(y′ij − fθ(xij))2 = minθ

N ′∑
i=1

(
kif

2
θ (xi) +

ki∑
j=1

(y′ij)
2 −

ki∑
j=1

2y′ijfθ(xi)

)
.

Notice we can factor out ki to obtain that the above is equal to

minθ

N ′∑
i=1

ki

(
f 2
θ (xi) +

1

ki

ki∑
j=1

(y′ij)
2 − 2fθ(xi) ·

1

ki

ki∑
j=1

y′ij

)
.

Define ŷi =
1
ki

∑ki
j=1 y

′
ij. Adding and subtracting ŷ2i , we obtain the above is equal to

minθ

(
N ′∑
i=1

ki (fθ(xi)− ŷi)2 +
N ′∑
i=1

ki

(
1

ki

ki∑
j=1

(y′ij)
2 − ŷ2i

))
.

The second term does not depend on θ, and so minimizing the above is equivalent to mini-
mizing

minθ

N ′∑
i=1

ki (fθ(xi)− ŷi)2 .

This is a least squares error from the average of the outputs over the unique inputs, but it
is weighted by the number of times each input occurs. This completes the problem. ■

Exercise 2.7. Suppose we have a sample of N pairs xi, yi drawn i.i.d. from the distribution
characterized as follows.

xi ∼ h(x), the design density

yi = f(xi) + ϵi, f is the regression function

ϵi ∼ (0, σ2)

We construct an estimator for f linear in the yi:

f̂(x0) =
N∑
i=1

ℓi(x0;X )yi

where the weights ℓi(x0;X ) do not depend on the yi, but do depend on the entire training
sequence of xi, denoted here by X .

(a) Show that linear regression and k-nearest neighbor regression are members of this class
of estimators. Describe explicitly the weights ℓi(x0;X ) in each of these cases.

(b) Decompose the conditional mean squared error

EY|X (f(x0)− f̂(x0))2

into a conditional bias squared and conditional variance component. Like X , here Y repre-
sents the entire training sequence yi.



6 PEOPLES

(c) Decompose the (unconditional) MSE

EX ,Y(f(x0)− f̂(x0))2

into a squared bias and variance component.

(d) Establish a relationship between the squared biases and variances in the above two
cases.

Solution.
(a) Linear regression, given training data X ,Y , by definition estimates f with a function

f̂(x0) = x⊤0 β̂, where

β̂ = (X⊤X)−1X⊤y,

where X is an N × p matrix with i-th row xi ∈ Rp, and y ∈ RN with i-th entry yi. Note
that x⊤0 (X

⊤X)−1X⊤ is a 1×N . Rewriting the matrix notation as a sum, we see that

f̂(x0) =
N∑
i=1

(
x⊤0 (X

⊤X)−1X⊤)
1,i
yi.

This shows that linear regression is of the above form, with ℓi(x0;X ) =
(
x⊤0 (X

⊤X)−1X⊤)
1,i
.

We emphasize that ℓi(x0;X ) does not depend on yi, as required. For k−NN regression, the

approximator f̂ is chosen as

f̂(x0) =
1

k

∑
xi∈Nk(x0)

yi,

where Nk(x0) denotes the set of k elements of X closest to x0. Rewriting this, we see that

f̂(x0) =
N∑
i=1

1

k
χNk(x0)(xi)yi.

where χA(x) denotes the characteristic function of set A. This way, we see k−NN regression
is of the above form as well, where ℓi(x0;X ) = 1

k
χNk(x0)(xi), which again depends only on x0

and X .

(b) Adding and subtracting the conditional expectation E[f̂(x0)|X ],

E
[
(f(x0)− f̂(x0))2

∣∣∣∣X] = E
[
(f(x0)− E[f̂(x0)|X ])2

∣∣∣∣X]+ E
[
(E[f̂(x0)|X ]− f̂(x0))2

∣∣∣∣X]
+2E

[
(f(x0)− E[f̂(x0)|X ])(E[f̂(x0)|X ]− f̂(x0)

∣∣∣∣X] .
Looking at the first term, we see that these are constants and can be taken out of the
conditional expectation. The first term becomes (f(x0) − E[f̂(x0)|X ])2 = Bias(f̂(x0)|X )2.
The second term already reads as conditional variance. For the final term, since E[f̂(x0)|X ]
is measurable w.r.t. X , and f(x0) is fixed, we use the taking out what is known property of
conditional expectation to obtain

2E
[
(f(x0)− E[f̂(x0)|X ])(E[f̂(x0)|X ]− f̂(x0)

∣∣∣∣X]
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= 2(f(x0)− E[f̂(x0)|X ])E
[
E[f̂(x0)|X ]− f̂(x0)

∣∣∣∣X] .
Then, by using linearity of conditional expectation, we see that the above term vanishes.
We are left with

Bias(f̂(x0)|X )2 +Var(f̂(x0)|X ),
which was to be demonstrated.

(c) Let us to the same computation as before, only this time we are taking the expectation
over X ,Y . We have

MSE(f)(x0) = E
[
(f(x0)− E[f̂(x0)])2

]
+ E

[
(E[f̂(x0)]− f̂(x0))2

]
+2E

[
(f(x0)− E[f̂(x0)])(E[f̂(x0)]− f̂(x0))

]
.

where the expectations are taken over X ,Y . Notice that f(x0)− EX ,Y [f̂(x0)] is a constant,
and can be pulled out of the expectation. Linearity then shows that the cross term vanishes.
Similarly, since (f(x0)−EX ,Y [f̂(x0)])

2 is constant, we can pull it out of the expectation. This
is the Bias2 term. The second term again is already written as variance. This completes the
proof.

(d) Taking the expectation over X of the conditioned MSE yields the (unconditional)
MSE, by the expectation property of conditional expectation. But in fact, comparing
individual terms, it is easy to see that

EXBias(f̂(x0)|X )2 = Bias2(f̂(x0)),

which in turn shows that

EXVar(f̂(x0)|X ) = Var(f̂(x0)).

■

Exercise 2.8. Coding exercise

Solution. ■

Exercise 2.9. Consider a linear regression model with p parameters, fit by least squares to
a set of training data (x1, y1), . . . , (xN , yN) drawn at random from a population. Let β̂ be
the least squares estimate. Suppose we have some test data (x̃1, ỹ1), . . . , (x̃M , ỹM) drawn at

random from the same population as the training data. If Rtr(β̂) =
1
N

∑N
i=1(yi− β̂⊤xi)

2, and

Rte(β̂) =
1
M

∑M
i=1(ỹi − β̂⊤x̃i)

2, show that

E
[
Rtr(β̂)

]
≤ E

[
Rte(β̂)

]
,

where the expectations are over all that is random in each expression.

Solution. Notice that β̂ can be viewed as a function of the test data β̂((x1, y1), . . . , (xN , yN)) ∈
Rp such that

Rtr(β̂) ≤ Rtr(β)



8 PEOPLES

almost surely for any set of data points (x1, y1), . . . (xN , yN) drawn i.i.d., and any vector β.
Hence, the inequality holds taking the expectation over all testing data:

E
[
Rtr(β̂)

]
≤ E [Rtr(β)] .

By the i.i.d. assumption, note that E [Rtr(β)] = E
[
(yi − β⊤xi)

2
]
, for any i = 1, . . . , N .

Particular choice of β yields

E
[
Rtr(β̂)

]
≤ E

[
(ỹj − β̂⊤x̃j)

2
]
.

Indeed, one can check that β = 1
∥xi∥2

(
yixi − ỹjxi + xix̃

⊤
j β̂
)
works. Since the testing data is

also i.i.d., we have

E
[
Rtr(β̂)

]
≤ E

[
(ỹj − β̂⊤x̃j)

2
]
=

1

M

M∑
j=1

E
[
(ỹj − β̂⊤x̃j)

2
]
= E

[
Rte(β̂)

]
.

This completes the problem. ■

3. Solutions to Chapter 3

Exercise 3.1. Show that the F -statistic (3.13) for dropping a single coefficient from a model
is equal to the square of the corresponding z-score (3.12).

Comment. The equations referred to above are given by the following. The z-score is given
by

zj =
β̂j

σ̂
√
vj
, (3.12)

where β̂j is the least-squares approximation to βj, σ̂ is an estimation of the variance of the
noise, and vj is the j-th diagonal element of (X⊤X)−1. This is used to test the hypothesis
that the coefficient βj is 0. A z-score with large absolute value implies that this hypothesis
is not true. Similarly, the F -statistic tests for significance of dropping p1 − p0 parameters
from a model with p1 + 1 parameters simultaneously:

F =
(RSS0 − RSS1)/(p1 − p0)

RSS1/(N − p1 − 1)
, (3.13)

where RSS1 is the residual sum-of-squares fit for the model with p1+1 parameters, and RSS0

is the same for the smaller model with p0 + 1 parameters. ■

Solution. Consider first the denominator in Equation (3.13):

RSS1/(N − p1 − 1) =
1

N − p1 − 1

N∑
i=1

(yi − ŷi)2 = σ̂2, (3.1)

using the definition of σ̂ on p. 47 of [2]. Since we are only dropping one parameter from the

model, p1 − p0 = 1. It remains to show that the numerator of Equation (3.13) is β̂2
j /vj. For

this, it is most useful to appeal to Algorithm 3.1 in [2]. First note that, upon reordering the
inputs, it is without loss of generality to assume that the final (p1 + 1)-th input is dropped.
Let

z0, . . . , zp1−1
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be the orthogonal basis for the column space of X̃ obtained from Algorirthm 3.1, where X̃
is the matrix obtained from X by removing the (p1 + 1)-th column. Doing this a final time
for the removed column, we have that

z0, . . . , zp1−1, zp1

is a basis for the column space of X. Extend this basis to an orthonormal basis
{

zj
∥zj∥

}N

j=1

for RN . Write y in terms of this basis:

y =
N∑
j=0

aj
zj
∥zj∥

.

Notice that RSS0 =
∑N

j=p1−1 |aj|2, while RSS1 =
∑N

j=p1
|aj|2. Hence,

RSS0 − RSS1 =

∣∣∣∣∣
〈
y,

zp1
∥zp1∥

〉∣∣∣∣∣
2

=
|⟨y, zp1⟩|

2

⟨zp1 , zp1⟩
=

∣∣∣∣ ⟨y, zp1⟩⟨zp1 , zp1⟩

∣∣∣∣2 ⟨zp1 , zp1⟩ = β̂2
p1
∥zp1∥2. (3.2)

To see that ∥zp1∥2 is indeed the (p1 + 1)-th diagonal entry of (X⊤X)−1, consider the QR
decomposition. We have that

X = QR,

where Q is an orthogonal matrix, and R is an upper triangular matrix with R = DΓ. Here,

Γ is upper triangular with entries (Γ)ij =
⟨zi,xj⟩
⟨zi,zi⟩ , and D is diagonal with entries (D)ii = ∥zi∥.

Notice that
X⊤X = R⊤Q⊤QR = R⊤R = Γ⊤D2Γ.

Inverting, we have that (X⊤X)−1 = Γ−1D−2(Γ−1)⊤. Using the above to investigate (X⊤X)−1

entry by entry, we have that(
(X⊤X)−1

)
(p1+1),(p1+1)

=
(
last row of Γ−1

)
·
(
last column of D−2(Γ−1)⊤

)
.

Since Γ is upper triangular, it is easy to see that Γ−1 is upper triangular. Moreover, the
diagonal entries of Γ−1 are given by the reciprocal of the corresponding diagonal entries in
Γ. Using this, the final column of D−2(Γ−1)⊤ is easily computed to be

0
0
...

1
∥zp1∥2

∥zp1∥
2

⟨xp1 ,zp1 ⟩

 ,
since D−2 is diagonal and (Γ−1)⊤ is lower triangular. Since xp1 = zp1 +

∑
j<p1

γ̂jp1zj, the
above vector simplifies to 

0
0
...
1

 .
Similarly, the last row of Γ−1 is given by[

0 . . . 0
∥zp1∥

2

⟨xp1 ,zp1 ⟩

]
.
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Again since xp1 = zp1 +
∑

j<p1
γ̂jp1zj, the final row simplifies to[

0 . . . 0 ∥zp1∥2
]
,

and hence the (p1+1)-th diagonal entry of (X⊤X)−1 is ∥zp1∥2, which was to be demonstrated.
Putting together the above discussion with Equations (3.1) and (3.2), we have that

F =
β̂2
j

σ̂2vj
.

This completes the problem. ■

Exercise 3.2. Given data on two variables X and Y , consider fitting a cubic polynomial
regression model f(X) =

∑3
j=0 βjX

j. In addition to fitting the curve, you would like a 95%
confidence band about the curve. Consider the following two approaches.

(1) At each point x0, form a 95% confidence interval for the linear function a⊤β =∑3
j=0 βjx

j
0.

(2) Form a 95% confidence set for β as in (3.15), which in turn generates confidence
intervals for f(x0).

How do these approaches differ? Which band is likely to be wider? Conduct a small simula-
tion experiment to compare the two methods.

Comment. The equation referenced above in the text is given by

Cβ = {β : (β̂ − β)⊤X⊤X(β̂ − β) ≤ σ̂(χ2
p+1)

1−α}. (3.15)

The corresponding confidence band generated for f is

{fβ(x) : β ∈ Cβ}.
■

Solution. We will discuss for each item separately. For the following discussion we will
assume the model is Y = f(X) =

∑3
j=0 βjX

j + ϵ where ϵ ∼ N (0, σ2), and given N data

points X with observations Y, we estimate with a cubic model f̂ obtained by least squares
on the data.

(1) Given a point x0, we form the estimated output f̂(x0). The confidence band for this
point is given by

f̂(x0)± z
√
Var(f̂(x0))

where z is the desired confidence level associated with the distribution of f̂(x0)−f(x0)√
Var(f̂)

.

For convenience, denote by x0 the vector x0 = [1, x0, x
2
0, x

3
0]

⊤. Notice that

Ef̂(x0) = Ex⊤
0 β̂ = x⊤

0 β,

since Eβ̂ = β (see Equation 3.10 in [2]). Similarly,

Var(f̂(x0)) = E
(
x⊤
0 (β̂ − β)(β̂ − β)⊤x0

)
= x⊤

0 E
[
(β̂ − β)(β̂ − β)⊤

]
x0 = σ2x⊤

0 (X
⊤X)−1x0,
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where we again used Equation (3.10) in [2]. Moreover, f̂(x0) follows a normal distri-
bution, and hence z corresponds to the quantiles of a standard normal distribution.
It follows that

f̂(x0)− 1.96σ
√

x⊤
0 (X

⊤X)−1x0 ≤ f(x0) ≤ f̂(x0) + 1.96σ
√

x⊤
0 (X

⊤X)−1x0.

with probability at least .95. Note that if σ is not known, then we estimate σ with
σ̂, in which case the above follows a t-distribution. For large N , the difference is
negligible, and we can still estimate the above using 1.96. See Figure 3.3 in [2].

(2) To generate a confidence band for f using Cβ, for each point x0, we include in our
band the points

{x⊤
0 β : β ∈ Cβ}.

So for a fixed point x0, we investigate local minima and maxima of the map g : β 7→
x⊤
0 β. For nonzero x0, we see by investigating ∇g that no local maxima or minima

occur on the interior. Hence, the maximum and minimum for each point will occur
on the boundary of Cβ. Note that (χ2

4)
.975 = 11.14. For convenience, denote by

11.14σ2 := ϵ. Define an innerproduct that depends on X⊤X in the following way:

⟨v, w⟩X⊤X = ⟨(X⊤X)1/2v, (X⊤X)1/2w⟩,
where ⟨·, ·⟩ denotes the standard euclidean innerproduct. Given a fixed data point

x0 and estimate β̂, notice that x⊤
0 β̂ is a constant. Hence,

max
∥β−β̂∥2

X⊤X
≤ϵ

x⊤
0 β = x⊤

0 β̂ + max
∥β−β̂∥2

X⊤X
≤ϵ

x⊤
0 (β − β̂).

Similarly for the minimum. Hence, changing variables, it is equivalent to consider
the problem

max
∥w∥2

X⊤X
=ϵ

x⊤
0 w.

Notice that if wmax is the argmax of the above, then −wmax will be the argmin
of the corresponding minimization problem. Hence, to find the solution to both
the maximization and minimization problems simultaneously, it suffices to find the
argmax of the square. I.e., we study

max
∥w∥2

X⊤X
=ϵ
⟨x⊤

0 w,x
⊤
0 w⟩ = max

∥w∥2
X⊤X

=ϵ
⟨x0x

⊤
0 w,w⟩.

Writing in terms of w̃ := 1√
ϵ
w, we have

max
∥w∥2

X⊤X
=ϵ
⟨x0x

⊤
0 w,w⟩ = ϵ max

∥w̃∥2
X⊤X

=1
⟨x0x

⊤
0 w̃, w̃⟩.

Using that (X⊤X)−1/2(X⊤X)1/2 = I, and changing variables to v = (X⊤X)1/2w̃, we
can rewrite the above as

ϵ max
∥w̃∥2

X⊤X
=1
⟨x0x

⊤
0 w̃, w̃⟩ = ϵ max

∥v∥2=1
⟨x0x

⊤
0 (X

⊤X)−1/2v, (X⊤X)−1/2v⟩

= ϵ max
∥v∥2=1

⟨(X⊤X)−1/2x0x
⊤
0 (X

⊤X)−1/2v,v⟩



12 PEOPLES

Figure 1. 95% Confidence intervals for fitting a cubic polynomial from 10
noisey observations.

where on the final line we used that (X⊤X)−1/2 is self-adjoint. Letting

A = (X⊤X)−1/2x0x
⊤
0 (X

⊤X)−1/2,

this can be rewritten as an eigenvalue problem:

ϵ max
∥v∥2=1

⟨Av,v⟩ = ϵλmax(A).

This uses the fact that A is self-adjoint (easy to check). Tracing through definitions,
we can find the original maximum and minimum in terms of ϵλmax(A). In particular,
the 95% confidence band for x⊤

0 β is given by

x⊤
0 β̂ ±

√
ϵλmax(A) = x⊤

0 β̂ ± σ̂
√
11.14λmax(A).

This completes the discussion of part (2).

The bands in part (2) will certainly be wider. Intuitively, this follows from the fact that
generating bands in terms of β is done in 4 dimensions, and hence the confidence bands
depend on (χ2

4+1)
.975, while generating bands in the standard way occurs in 1 dimension, and

the bands depend on 1.96, the 97.5-th percentile of the standard normal distribution. More
formally, notice that the term in part (1) is given by√

x⊤
0 (X

⊤X)−1x0 =
√

tr
(
x⊤
0 (X

⊤X)−1x0

)
=
√

tr
(
(X⊤X)−1/2x0x⊤

0 (X
⊤X)−1/2

)
=

=
√
tr (A).

where we used the cyclic property of trace. The trace of a matrix is the sum of its eigen-
values. However, since x0x

⊤
0 is rank 1, its clear that A also has rank 1, since (X⊤X)−1/2

is invertible. Hence, the sum of the eigenvalues of A is equal to its maximum eigenvalue,
λmax(A). Therefore, provided that σ̂ ≈ σ, we have that σ̂

√
11.14 > 1.96σ. Hence, the bands

in part 2 will be larger.
We display the results for the numerical experiment performed as follows. We generated a
dataset X of 10 points in the interval [−1, 1]. For each xi ∈ X, we saved noisey observations
from the polynomial

f(x) = x3 + x2 − 2x+ 1.

Namely, our observations Y = {y1, . . . , y10} were given by

yi = f(xi) + ϵi,
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where ϵi ∼ N (0, .52). We then performed least squares fit, and computed the upper and lower
confidence intervals as described above. The results are shown in Figure 1. Our analysis
is confirmed, and the confidence bands using the method described in part (2) are indeed
wider. ■

Exercise 3.3. Gauss-Markov theorem:

(a) Prove the Gauss-Markov theorem: the least squares estimate of a parameter a⊤β has
variance no bigger than that of any other linear, unbiased estimate of a⊤β.

(b) The matrix inequality B ⪯ A holds if A − B is positive semidefinite. Show that if

V̂ is the variance-covariance matrix of the least squares estimate of β, and Ṽ is the

variance-covariance matrix of any other linear unbiased estimate, then V̂ ⪯ Ṽ.

Solution. (a) Let a⊤β denote the true quantity, and suppose we are given fixed N noisey
observations y where the noise has mean 0 and variance σ2. Let X be the design
matrix so that y = Xβ + ϵ. Denote by b⊤y = a⊤(X⊤X)−1X⊤y the least squares
estimate of the parameter, and let c⊤y be any other unbiased, linear estimate. Note
that we can write c⊤y = a⊤(X⊤X)−1X⊤y + γ⊤y, for some nonzero γ. Since c⊤y is
unbiased,

a⊤β = E[c⊤y] = a⊤β + γ⊤E [y] .

Hence,

γ⊤Xβ = 0. (3.3)

Let us use this to calculate the variance of c⊤y in terms of the variance of the least
squares estimate. Namely,

Var(c⊤y) = E
[(
a⊤(X⊤X)−1X⊤y + γ⊤y − a⊤β

)2]
= E

[
(v − γ⊤y)2

]
,

where v = a⊤(X⊤X)−1X⊤y − a⊤β. Expanding the above yields

E
[
v2
]
− 2E

[
vy⊤] γ + γ⊤E

[
yy⊤] γ.

The first term in the equation above is precisely the variance of the least squares
estimate. It is easy to see that the second term vanishes completely, using that
E
[
y⊤] = β⊤X⊤, E

[
yy⊤] = Xββ⊤X + σ2I, and (3.3). Similarly, the final term

simplifies to σ2γ⊤γ. Putting it all together, we have that

Var(c⊤y) = Var(b⊤y) + σ2∥γ∥2.
This shows that Var(b⊤y) ≤ Var(c⊤y), and hence completes part (a).

(b) The outline of this problem is similar. Let β̂ := (X⊤X)−1X⊤y be the least squares

estimate, and β̃ := Ay be any other linear unbiased estimate. Write

A = (X⊤X)−1X⊤ + (A− (X⊤X)−1X⊤) := (X⊤X)−1X⊤ +B.

Using that Eβ̃ = Eβ̂ = β, the above equation shows, after taking expectations and
multiplying on the right by y, that

0 = E [By] = BXβ. (3.4)



14 PEOPLES

We keep this in mind, and expand out the variance-covariance expression for Ay:

Ṽ = E
[(
(X⊤X)−1X⊤y +By − β

) (
(X⊤X)−1X⊤y +By − β

)⊤]
= E

[
(v +By)

(
v⊤ − y⊤B⊤)]

where v = β̂− β. Notice that E
[
vv⊤] = Var(β̂). Hence, expanding the above yields

V̂ − E
[
Byy⊤X(X⊤X)−1 −Byβ⊤]

− E
[(
X⊤X)−1X⊤yy⊤B⊤ − βy⊤B⊤)]+ E

[
Byy⊤B⊤] .

Using that E
[
yy⊤] = Xββ⊤X⊤+σ2I, E [y] = Xβ, and (3.4), we see that both cross

terms vanish. Moreover, the last term simplifies to σ2BB⊤. We are left with

Ṽ = V̂ + σ2BB⊤.

BB⊤ is clearly positive semi-definite, since for any vector w ∈ Rp+1,

⟨BB⊤w,w⟩ = ⟨B⊤w,B⊤w⟩ ≥ 0.

Hence, V̂ ⪯ Ṽ, which was to be demonstrated.
■

Exercise 3.4. Show how the vector of least squares coefficients can be obtained from a single
path of the Gram-Schmidt procedure (Algorithm 3.1). Represent your solution in terms of
the QR decomposition of X.

Solution. By definition of least squares, we have that

β̂ = (X⊤X)−1X⊤y,

and

ŷ = Xβ̂ = X(X⊤X)−1X⊤y.

A single pass of the Gram-Schmidt algorithm (i.e. algorithm 3.1) yields an orthogonal matrix
Q (i.e. Q⊤Q = I), and an upper-triangular matrix R such that

X = QR.

Plugging in the QR-decomposition for β̂, we have that

β̂ = (R⊤Q⊤QR)−1R⊤Q⊤y.

Since R is invertible and Q is orthogonal, this simplifies to

β̂ = R−1(R−1)⊤R⊤Q⊤y = R−1Q⊤y.

Hence,

ŷ = QRβ̂ = QRR−1Q⊤y = QQ⊤y.

This shows how a single pass of Gram-Schmidt yields the vector of least-squares coefficients,
and represents that vector, as well ŷ, in terms of the QR-decomposition. ■
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Exercise 3.5. Consider the ridge regression problem (3.41). Show that this problem is
equivalent to the problem

β̂c = argminβc

{
N∑
i=1

[yi − βc
0 −

p∑
j=1

(xij − xj)βc
j ]

2 + λ

p∑
j=1

(βc
i )

2

}
.

Give the correspondence between βc and the original β in (3.41). Characterize the solution
to this modified criterion. Show that a similar result holds for the lasso.

Solution. The minimization problem in (3.41) is given by

argminβ

{
N∑
i=1

[yi − β0 −
p∑

j=1

xijβj]
2 + λ

p∑
j=1

(βi)
2

}
.

Simply adding and subtracting
∑p

j=1 xj, we obtain that the above is given by

argminβ

{
N∑
i=1

[yi − (β0 −
p∑

j=1

xj)−
p∑

j=1

(xij − xj)βj]2 + λ

p∑
j=1

(βi)
2

}
.

Defining βc
0 := (β0 −

∑p
j=1 xj), and βc

j = βj for j = 1, . . . , p, we have that the above is
equivalent to

β̂c = argminβc

{
N∑
i=1

[yi − βc
0 −

p∑
j=1

(xij − xj)βc
j ]

2 + λ

p∑
j=1

(βc
i )

2

}
.

This establishes that the two minimizations are equivalent, and gives a clear correspondence
between β̂ and β̂c. While βc

j for j ≥ 1 are found in the same way, we can use this to find a
closed form expression for βc

0. Namely, setting the derivative of the above quantity w.r.t. βc
0

to 0 yields the equation
N∑
i=1

[yi − βc
0 −

p∑
j=1

(xij − xj)βc
j ] = 0.

Distributing the sum, we see that the second term vanishes:
∑N

i=1

∑p
j=1(N

1
N
xij − xj) =∑p

j=1(N
1
N

∑N
i=1 xij −Nxj) =

∑p
j=1(Nxj −Nxj) = 0. Hence, we obtain that

βc
0 =

1

N

N∑
i=1

yi

is the solution for βc
0. Therefore, replacing y with the centered data yc, as well as X with

the N × p centered matrix Xc (note: not N × (p+ 1)), we obtain that the term in the curly
brackets above can be rewritten as

(yc −Xcβ
c)⊤(yc −Xcβ

c) + λ∥βc∥2. (3.5)

Setting the derivative w.r.t. β equal to 0 yields the equation

−2X⊤
c (yc −Xcβ) + 2λβ = 0.

Solving gives the minimizer:

β̂c = (X⊤
c Xc + λI)−1X⊤

c y.
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For the lasso, only the penalty term is changed. Hence, the exact analysis as above can be
used to recenter the data, and we can rewrite the lasso problem as

argminβc{(yc −Xcβ
c)⊤(yc −Xcβ

c) + λ∥βc∥L1 .},

where ∥βc∥L1 =
∑p

j=1 |βc
j |. We note, as the book does, that this no longer has a closed-form

solution in general, and becomes a quadratic programming problem. ■

Exercise 3.6. Show that the ride regression estimate is the mean (and mode) of the pos-
terior distribution, under a Gaussian prior β ∼ N (0, τI), and Gaussian sampling model
y ∼ N (Xβ, σ2I). Find the relationship between the regularization parameter λ in the ridge
formula, and the variances τ and σ.

Solution. The probability density function associated to β is given by

C exp

(
−∥β∥2

2τ

)
,

while the probability density function associated to the sampling model (i.e., probability of
(X,y) given β) is given by

D exp

(
−∥y −Xβ∥2

2σ2

)
.

where C and D are constants irrelevant in this setting. Bayes’ theorem states that posterior,
probability of β given (X,y) is proportional to the product of the above probabilities:

p(β|(X,y)) = Const exp

(
−∥y −Xβ∥2

2σ2
− ∥β∥

2

2τ

)
.

for some proper normalization making the above into a probability density function. The
above is again Gaussian, and hence the mean of this distribution is given by β̂ which maxi-
mizes the above quantity. This is equivalent to maximizing the following:

β̂ = argmaxβ log (p(β|(X,y))) = argmaxβ log(Const)−
∥y −Xβ∥2

2σ2
− ∥β∥

2

2τ
.

The constant in front does not depend on β, so it can be removed without affecting the
argmax. Hence, it’s equivalent to minimizing the negative of the above. I.e.,

β̂ = argminβ

∥y −Xβ∥2

2σ2
+
∥β∥2

2τ
.

Multipling by a constant does not change the argmin, so

β̂ = argminβ∥y −Xβ∥2 + σ2∥β∥2

τ
.

Referring back to (3.5), we see that this is equivalent to the ridge regression estimate with

λ = σ2

τ
. ■

Exercise 3.7. Assume yi ∼ N (β0 + x⊤i β, σ
2), i = 1, 2, . . . , N, and the parameters βj, j =

1, . . . , p are each distributed as N (0, τ 2), independently of one another. Assuming σ2 and τ 2

are known, and β0 is not governed by prior, show that the (minus) log-posterior density of

β is proportional to
∑N

i=1(yi − β0 −
∑

j xijβj)
2 + λ

∑
j=1p β

2
j .
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Solution. The solution to this exercise is essentially the same as the one above. Note that
in this situation, since β0 is not governed by a prior, it appears in the probability density
function of (X.y) given β, as it is in the formula for the mean, but β0 does not appear in
the other term. I.e, by the same reasoning above, we have that

p(β|((X,y)) = Const exp

(
1

σ2

N∑
i=1

(yi − β0 −
∑
j

xijβj)
2

)
exp

(
1

τ 2

p∑
j=1

β2
j

)
.

Taking the log and carrying out the same reasoning as before and multiplying by σ2, we
see that the minus log-posterior of β is proportional to the ridge problem, which was to be
demonstrated. ■

Exercise 3.8. Consider the QR decomposition of the uncentered N × (p + 1) matrix X

(whose first column is all ones), and the SVD of the N × p centered matrix X̃. Show that
Q2 and U span the same subspace, where Q2 is the sub-matrix of Q with the first column
removed. Under what circumstances will they be the same, up to sign flips?

Solution. One can easily check that UU⊤ is the projection onto the column space of X̃.
Hence, since the columns of U are orthogonal, it follows that they span the column space of
X̃:

Col(X̃) = Col(U).

So, it suffices to show that Col(Q2) = Col(X̃). Notice that

Col(X) = Span{(1, . . . , 1)⊤} ⊕ Col(X̃),

and since the columns of X̃ are centered, it follows that any vector in Span{(1, . . . , 1)⊤} is
orthogonal to any vector in Col(X̃). Hence, Col(X̃) is the unique orhtogonal complement to
Span{(1, . . . , 1)⊤}.
Similarly to U, the columns of Q form an orthonormal basis for the column space of X (see
Exercise 3.4). Hence

Col(X) = Col(Q) = Span{q1} ⊕ Col(Q2),

where q1 denotes the first column of Q, and Q2 is the unique orthogonal complement to
Span{q1}. The first column of Q is just the normalized vector of all ones (indeed, see
algorithm 3.1.), we have

Col(X) = Span{(1, . . . , 1)⊤} ⊕ Col(Q2),

where again every vector in Col(Q2) is orthogonal to any vector in Span{(1, . . . , 1)⊤}. By
uniqueness of the orthogonal complement, it follows that

Col(Q2) = Col(X̃) = Col(U),

which was to be demonstrated.
To see when the matrices U and Q2 are the same, consider the following. By definition,
the columns of U are the normalized vectors corresponding to the p nonzero eigenvalues of
X̃X̃⊤:

X̃X̃⊤ui = σiui,
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where ui is the i-th column of U. Since the columns of Q2 are normalized, Q2 = U is
equivalent to

X̃X̃⊤qi+1 = σiqi+1,

for i = 1, . . . p. ■

Exercise 3.9. Forward stepwise regression. Suppose we have the QR decomposition for the
N×q matrix X1 in a multiple regression problem with response y, and we have an additional
p − q predictors in the matrix X2. Denote the current residual by r. We wish to establish
which one of these additional variables will reduce the residual-sum-of squares the most when
included with those in X1. Describe an efficient procedure for doing this.

Solution. Performing QR decomposition on X1, we obtain q orthonormal vectors {qi}. For
i = 1, . . . , p − q, denote by q

(i)
q+1 the i-th column of X2, orthogonalized with respect to

{qj}qj=1. For each i = 1, . . . , p− q, extend {qj}qj=1 ∪ {q
(i)
q+1} to a basis for RN , with vectors

{q(i)
j }

p
j=q+2. Notice that the current residual is given by

r := y − ŷ =
N∑

j=q+1

⟨y,q(i)
j ⟩q

(i)
j .

Note that the above has norm independent of i, and for each i is given by

∥r∥2 = |⟨y,q(i)
q+1⟩|2 +

N∑
j=q+2

|⟨y,q(i)
j ⟩|2.

It follows that the residual ri after adding the i-th column of X2 into model has norm

∥ri∥2 =
N∑

j=q+2

|⟨y,q(i)
j ⟩|2.

Hence, choosing

argmaxi|⟨y,q
(i)
q+1⟩|2

results in a model that decreases the residual sum of squares the most. This completes the
problem. ■

Exercise 3.10. Backward stepwise regression. Suppose we have the multiple regression fit
of y on X, along with the standard errors and Z-scores as in Table 3.2. We wish to establish
which variable, when dropped, will increase the residual sum-of-squares the least. How would
you do this?

Solution. Let RSS1 denote the residual sum of squares for the model with p-parameters,
and RSS0,j a model with p − 1 parameters, after dropping the j-th coefficient. We wish to
minimize the increase

wj := RSS0,j − RSS1.

I.e., we wish to find

j∗ := argminjwj.
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Multiplying by a constant does not change the argmin. Hence,

j∗ := argminj

wj/(p− (p− 1))

RSS1/(N − p− 1)
.

Notice that the above is precisely the F statistic (3.13) for dropping a single coefficient.
Exercise 3.1 showed this is precisely the corresponding z-score. Hence

j∗ := argminjzj,

where zj denotes the j-th Z-score. This completes the problem. ■

Exercise 3.11. Show that the solution to the multivariate linear regression problem (3.40)
is given by (3.39). What happens if the covariance matrices Σi are different for each obser-
vation?

Comment. The multivariate linear regression corresponds to the situation where each obser-
vation yi is a vector in RK , and each observation has some random noise ϵ, which is again
a vector in RK . Denoting Cov(ϵ) = Σ the covariance matrix for the noise associated with
each observation, we have the minimization criterion

RSS(B;Σ) =
N∑
i=1

(yi − f(xi))⊤Σ−1(yi − f(xi)). (3.40)

where B is the (p+1)×K matrix of parameters. The solution in the text mentioned above
is given by

B̂ = (X⊤X)−1X⊤Y, (3.39)

where Y is the N ×K response matrix. ■

Solution. We begin by rewriting (3.40) more suggestively:

RSS(B;Σ) = tr
(
(Y −XB)Σ−1(Y −XB)⊤

)
,

which is easy to check. Since Σ = Eϵϵ⊤ is a K ×K symmetric and positive-definite matrix,
it has a symmetric, positive definite square root Σ−1/2. Writing B̃ = BΣ−1/2, Ỹ = YΣ−1/2,
we can rewrite (3.40) as

RSS(B;Σ) = tr
(
(Ỹ −XB̃)(Ỹ −XB̃)⊤

)
= tr

(
(Ỹ −XB̃)⊤(Ỹ −XB̃)

)
.

We minimize the above over all matrices BΣ−1/2. According to the standard solution from
(3.39), we have that

ˆ̃B = (X⊤X)−1X⊤Ỹ.

Since the minimization was taken over matrices of the form BΣ−1/2, the matrix for which

the minimization is achieved has the form ˆ̃B = B̂Σ−1/2. Multiplying on the right by Σ1/2

shows that the solution is given by

B̂ = (X⊤X)−1X⊤Y,
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which was to be demonstrated.
If the correlations Σi vary with each observation, we have the equation

RSS(B;Σ1, . . . ,ΣN) =
N∑
i=1

(yi − f(xi))⊤Σ−1
i (yi − f(xi)).

Let y denote the column vector of size N ·K, obtained by stacking each observation, with
observation yi sitting as a column vector below observation yi−1. Perform the same oper-
ation for f(xi) to obtain f . Let ΣNK×NK denote the block diagonal matrix ΣNK×NK =
diag(Σ1, . . . ,ΣN). It is easy to check that

RSS(B;Σ1 . . . ,ΣN) = (y − f)⊤Σ−1
NK×NK(y − f).

Moreover, notice that f = diag(B⊤, . . . ,B⊤)x, where x is again the N vectors of size p+ 1,
xi ∈ Rp+1, stacked ontop of each other to obtain a vector in R(p+1)N . Using this, it is easy
to see that the map

ψ(b1,b2) = RSS(B1 +B2;Σ1 . . . ,ΣN)− RSS(B1;Σ1 . . . ,ΣN)− RSS(B2;Σ1 . . . ,ΣN),

where bi is the K(p+1) vector corresponding to matrix Bi with the columns stacked ontop
of each other, is bi-linear. Moreover, we see for any scalar a ∈ R, we have

RSS(aB;Σ1 . . . ,ΣN) = a2RSS(B;Σ1 . . . ,ΣN).

By definition, the above defines a quadratic form. Define a symmetric matrix

A ∈ R(p+1)K×(p+1)K

with entries

(A)ij =
1

2
ψ(ei, ej),

where ei denotes the K(p + 1) vector with a 1 in the i-th position, and 0’s elsewhere. It
follows from the theory of quadratic forms that

⟨Ab,b⟩ = RSS(B;Σ1 . . . ,ΣN).

Hence, to minimize the above is to find the eigenvector b̂ of A corresponding to the smallest
eigenvalue of A. Using the identification of vectors in RK(p+1) with (p + 1) × K matri-

ces mentioned above by stacking columns, we obtain the parameter set B̂ that minimizes
RSS(B;Σ1 . . . ,ΣN), which was to be demonstrated. ■

Exercise 3.12. Show that the ridge regression estimates can be obtained by ordinary least
squares regression on an augmented data set. We augment the centered matrix X with p ad-
ditional rows

√
λI, and augment y with p zeros. By introducing artifical data having response

zero, the fitting procedure is forced to shrink the coefficients toward zero. This is related to
the idea of hints due to Abu-Mostafa (1995), where model constraints are implemented by
adding artificial data examples that satisfy them.

Solution. Recall that with centered data, the ridge regression problem is given by

(y −Xβ)⊤(y −Xβ) + λ∥β∥2.
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Notice that if we denote the augmented data set by (X̃, ỹ), we have that

(ỹ − X̃β)⊤(ỹ − X̃β) =

([
y
0

]
−
[

X√
λI

]
β

)⊤([
y
0

]
−
[

X√
λI

]
β

)
=

([
y⊤ 0

]
− β⊤ [X⊤

√
λI
])([y

0

]
−
[

X√
λI

]
β

)
= ∥y∥2 − y⊤Xβ − β⊤X⊤y + β⊤ +X⊤Xβ + λ∥β∥2

= (y −Xβ)⊤(y −Xβ) + λ∥β∥2. (3.6)

This shows that the ridge regression is ordinary least squares on the augmented data, and
hence completes the problem. ■

Exercise 3.13. Derive the expression (3.62) and show that β̂pcr(p) = β̂ls.

Comment. ■

Solution. Let z0, z1 . . . , zM denote the first M principal component directions of X, with
z0 = (1, . . . , 1). By definition, Principal component regression calls to regress y on the first
M principal components. I.e.,

ŷpcr = y1+
M∑
i=1

⟨zi,y⟩
⟨zi, zi⟩

zi := y1+
M∑
i=1

θ̂izi,

where we used that ⟨z0, z0⟩ = N , and ⟨y, z0⟩ =
∑N

i=1 yi. However, by definition the principal
components are given by

zi = Xvi,

where

X = UΣV⊤

and vi denotes the i-th column of V. Hence,

y1+Xβ̂pcr = ŷpcr = y1+X

(
M∑
i=1

θ̂ivi

)
.

Since X has full rank, for any linear combination of its columns, we can uniquely determine
the coefficients. Hence,

β̂pcr(M) =
M∑
i=1

θ̂ivi,

which was to be demonstrated.

When M = p, the solution is given by

ŷpcr(p) = y1+

p∑
i=1

⟨zi,y⟩√
⟨zi, zi⟩

zi√
⟨zi, zi⟩

= y1+

p∑
i=1

⟨ui,y⟩ui = y1+UU⊤y,
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where we have used that the i-th principal component direction points in the direction of
ui, the i-th column of U. Hence, normalizing zi, we obtain ui. Using Exercise 3.8., we see
that the above can be written

ŷpcr(p) = y1+Q2Q2y,

since both Q2Q2 and UU are orthogonal projections onto the same subspace. This can
again be rewritten

ŷpcr(p) = QQ⊤y,

whereQ comes from the QR decomposition of the full matrix [1,X]. It follows that ŷpcr(p) =
ŷls, the least squares solution. Again, since the columns of X are linearly independent, it
follows that the linear combination of the columns of X uniquely determines the coefficients.
Hence,

β̂pcr = β̂ls,

which was to be demonstrated. ■

Exercise 3.14. Show that in the orthogonal case, PLS stops after m = 1 steps, because
subsequent φ̂mj in step 2 in Algorithm 3.3 are zero.

Solution. Notice that z1 is a linear combination of the columns, xj. Hence, we can compute
in step 2d that

x
(1)
j = xj −

φ̂0j∑p
k=1 φ̂

2
0k

p∑
i=1

φ̂0ixi.

Hence,

φ̂1j = ⟨x(1)
j ,y⟩ = φ̂0j −

φ̂0j∑p
k=1 φ̂

2
0k

p∑
i=1

φ̂2
0i = φ̂0j − φ̂0j = 0.

This shows that the coefficients in step 2 are 0, and hence that the algorithm terminates
after the first step. ■

Comment. Note that since the matrix X is orthogonal, z1 is already the projection of y onto
the subspace spanned by the columns of X. Hence, the least squares solution is obtained in
this case. ■

Exercise 3.15. Verify expression (3.64), and hence show that the partial least squares direc-
tions are a compromise between the ordinary regression coefficients and the principal com-
ponent directions.

Comment. The equation referenced above in the book is given by

maxαCorr
2(y,Xα)Var(Xα), subject to ∥α∥ = 1, α⊤Sφ̂ℓ = 0, ℓ = 0, 1, . . . ,m− 1. (3.64)

In the above, S is the sample variance-covariance matrix. We note that here the correlation
and variance refer to the sample correlation and variance (i.e., these are not matrices). We
emphasize that for this method, the columns of X are assume to be centered. Similarly, we
will center the output y as well. The claim is that φ̂m, output by algorithm 3.3, solves the
above. We emphasize that technically, φ̂m will only be proportional to the above problem,
since these vectors are not guaranteed to have norm 1. ■
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Solution. We begin by simplifying the above expression to maximize. Since the data is
centered, we have

Corr2(y,Xα)Var(Xα) =
⟨y,Xα⟩

Var(y)Var(Xα)
Var(Xα) =

⟨y,Xα⟩
Var(y)

.

Since the denominator is constant, we only need to maximize the numerator over α.
First, we check for m = 1, where there is no orthogonality constraint. To maximize the

inner product, we simply have
⟨y,Xα⟩ = ⟨X⊤y, α⟩,

from which it follows that α = (1/∥X⊤y∥)X⊤y. Notice that indeed,

φ̂1j = x⊤
j y,

by definition. This shows that (3.64) in the case m = 1.
Now, suppose (3.64) for ℓ = 1, 2, . . . ,m− 1. We emphasize that

⟨φ̂i, φ̂j⟩S = 0

whenever i ̸= j, where
⟨v, w⟩S := ⟨S1/2v,S1/2w⟩

denotes the inner-product with respect to the symmetric positive definite matrix S. Due to
the orthogonality constraints, the quantity to maximize can be altered to the following:

α⊤ (X⊤y − c1Sφ̂1 − · · · − cm−1Sφ̂m−1

)
.

Indeed, all terms except the first vanish due to the orthogonality constraints. Moreover, this
is true for any choice of constants c1, . . . , cm−1. Hence, if there exist a choice of constants
c1, . . . , cm−1 such that

X⊤y − c1Sφ̂1 − · · · − cm−1Sφ̂m−1

satisfies the orthogonality conditions, then the solution α will be the normalized vector
pointing in the direction of

X⊤y − c1Sφ̂1 − · · · − cm−1Sφ̂m−1,

since the inner-product of two vectors of fixed norm will always be maximized whenever
they point in the same direction. Let us use the Gram-Schmidt procedure to orthogonalize
(in ⟨·, ·⟩S inner-product) X⊤y with respect to mutually orthogonal vectors {φ̂i}m−1

i=1 . I.e.,
consider the vector

α̂ = X⊤y −
m−1∑
i=1

ciφ̂i,

where ci = ⟨X⊤y, φ̂i⟩S/⟨φ̂i, φ̂i⟩S. By the Gram-Schmidt procedure, for any i = 1, . . . ,m− 1,
we have that

⟨α̂, φ̂i⟩S = α̂⊤Sφ̂i = 0.

It follows that α̂/∥α̂∥ solves the maximization problem. It remains use iterative algebra and
the fact that

φ̂ℓj = ⟨x(ℓ−1)
j ,y⟩, x

(ℓ)
j = x

(ℓ−1)
j − [⟨zℓ,xℓ−1

j ⟩/⟨zℓ, zℓ⟩]zℓ
where zℓ =

∑p
j=1 φ̂ℓjx

(ℓ−1)
j , to conclude that the result α̂ is indeed a multiple of φ̂m. This

completes the proof of (3.64).
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Since ordinary least squares maximizes the correlation between y and Xβ, while principal
component regression maximizes the variance Var(Xβ), subject to orthogonality conditions,
one can see that partial least squares, which maximizes the product subject to orthogonality
conditions, is in this sense a compromise of the two notions. ■

Exercise 3.16. Derive the entries in Table 3.4, the explicit forms for estimators in the
orthogonal case.

Solution. We begin by showing the formula for the best subset of size M . Note that best
subset selection corresponds to keeping the M columns of X, which are obtained iteratively
by Exercise 3.9. I.e., we check

argmaxi|⟨y,qi⟩|,
where this is the i-th column of Q in the QR decomposition of X. Since X has orthonormal
columns already, qi = xi. Let X̃ denote the N ×M matrix obtained by keeping only the
columns for which the value x⊤

i y was among the M largest values. The solution is then
given by

ˆ̃β = (X̃⊤X̃)−1X̃⊤y = X̃⊤y,

since the columns of X̃ are still orthonormal. However, note that the ordinary least squares
solution is given by

β̂ = (X⊤X)−1X⊤y = X⊤y,

Moreover, recall that the absolute value of the β̂i, |x⊤
i y|, is the quantity being maximized

above. Hence, the solution is given by the set of β̂j such that β̂j ≥ β̂(M), where β̂(M) denotes

the M -th largest component in the vector β̂. This can be written

β̂j · I
(
|β̂j| ≥ |β̂(M)|

)
,

which was to be demonstrated.

For ridge regression, the solution is given by

β̂ridge = (X⊤X+ λI)−1X⊤y = (1 + λ)−1X⊤y = (1 + λ)−1β̂.

This shows immediately that the coefficients are given by

β̂j
1 + λ

.

For the lasso (assuming centered data), we have to minimize the quantity

1

2
(y −Xβ)⊤(y −Xβ) + λ∥β∥L1

over all β. Expanding the above and simplifying yields

1

2
y⊤y − ⟨β̂, β⟩+ 1

2
∥β∥2 + λ∥β∥L1 ,
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where in the above we used that X⊤X = I, and X⊤y = β̂. The term 1
2
y⊤y is constant, and

hence it suffices to minimize
1

2
∥β∥2 + λ∥β∥L1 − ⟨β̂, β⟩.

To take the derivative w.r.t. βj, we need to consider the case when βj > 0, and βj < 0, as
|βj| is not differentiable at 0.

(1) (βj > 0) The above expression is

1

2

p∑
i=1

β2
i + λβj + λ

∑
i ̸=j

|βi| −
p∑

i=1

βiβ̂i.

Setting the derivative of the above equation w.r.t. βj equal to 0 yields

βj + λ− β̂j = 0.

In this case we have
βj = β̂j − λ.

For this to be a minimum, we require β̂j − λ to be positive. This is easily seen by
looking at the above expression as a quadratic polynomial of βj.

(2) (βj < 0) Now the expression becomes

1

2

p∑
i=1

β2
i − λβj + λ

∑
i ̸=j

|βi| −
p∑

i=1

βiβ̂i.

Setting the derivative of the above equation w.r.t. βj equal to 0 yields

βj = β̂j + λ.

Similarly, for the quantity to be a minimum, and not a maximum, we require the
above to be positive.

Let βj denote the minimizer for the lasso obtained above. We can rewrite both cases as

βj = (β̂j − sign(βj)λ)+.

Since β̂j = sign(β̂j)|β̂j|, it only remains to show that sign(βj) = sign(β̂j). Since βj minimizes
the polynomial

1

2
x2 ± λx− β̂jx,

we see that their signs must agree. Indeed, if β̂j > 0 and βj < 0, we obtain that

1

2
β2
j − (λ+ β̂j)βj,

is a minimum, where (λ + β̂j) > 0. However, choosing βj to be larger (closer to 0 but still
negative), we achieve a smaller value. This contradicts that βj minimizes the above quantity.

The same reasoning results in a contradiction if β̂j < 0 and βj > 0. This shows

βj = sign(β̂j)(|β̂j| − λ)+,
which was to be demonstrated. This completes the problem. ■

Exercise 3.17. Repeat the analysis of Table 3.3 on the spam data discussed in Chapter 1.
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Exercise 3.18. Read about conjugate gradient algorithms (Murray et al., 1981, for example),
and establish a connection between these algorithms and partial least squares.

Solution. Conjugate gradient algorithms provide a method of solution to the problem Xβ =
y by iteratively finding ”better guesses” β(1), . . . , β(m), while PLS iteratively finds solutions
ŷ(1), . . . , ŷ(m). They are related in the sense that

ŷ(m) = Xβ(m).

■

Exercise 3.19. Show that ∥β̂ridge∥ increases as its tuning parameter λ→ 0. Does the same
property hold for the lasso and partial least squares estimates? For the latter, consider the
”tuning parameter” to be the successive steps in the algorithm.

Solution. Equation (3.48) is [2] is given by

Xβ̂ridge =

p∑
j=1

uj

d2j
d2j + λ

u⊤
j y, (3.47)

where X = UDV is the singular value decomposition of X, and D is diagonal with entries
di. From this we see

∥β̂ridge∥2 ≥ 1

d2max

∥Xβ̂ridge∥2 = 1

d2max

p∑
j=1

d2j⟨uj,y⟩
d2j + λ

.

This shows clearly that ∥β̂ridge∥2 increases as λ→ 0.
For the lasso, notice that (3.84) in [2] for estimating the lasso coefficients is given by

β̃j(λ)← S

(
N∑
i=1

xij(yi − ỹ(j)i ), λ)

)
(3.84)

where S(t, λ) = sign(t)(|t| − λ)+. This does have a norm increasing as λ→ 0. This suggests

∥β̂lasso∥ does get larger as λ→ 0.
From studying the method of solution for PLS in Exercise 3.15, we see that

∥X⊤y∥2 = ∥c1Sφ̂1 − · · ·+ cm−1Sφ̂m−1 + φ̂m∥2.
Using that φ̂m is orthogonal to all the other terms, we can compute

∥X⊤y∥2 = ∥c1Sφ̂1 + · · ·+ cm−1Sφ̂m−1∥2 + ∥φ̂m∥2.
Since the left-hand-side is constant, one would suspect that the norms do not blow up with
successive steps in the algorithm. ■

Exercise 3.20. Consider the canonical correlation problem (3.67). Show that the leading
pair of canonical variates u1, v1 solve the problem

max
u⊤(Y⊤Y)u=1,v⊤(X⊤X)v=1

u⊤(Y⊤X)v, (3.86)

a generalized SVD problem. Show that the solution is given by u1 = (Y⊤Y)−1/2u∗1 and
v1 = (X⊤X)−1/2v∗1 where u∗1 and v∗1 are the leading left and right singular vectors in

(Y⊤Y)−1/2(Y⊤X)(X⊤X)−1/2 = U∗D∗(V∗)⊤ (3.87)
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Show that the entire sequence um, vm,m = 1, . . . ,min(K, p) is also given by (3.87).

Solution. Assuming centered data, the canonical correlation problem (3.67) can be rewritten
as the maximization of

Corr2(Yu,Xv) =
⟨Yu,Xv⟩
∥Yu∥∥Xvi∥

=
u⊤Y⊤Xv

∥Yu∥∥Xv∥
.

Notice that the above is invariant under scaling u or v by positive constants. Hence, we can
replace u and v by multiples of themselves ensuring that both terms in the denominator are
1. The maximization problem then becomes

max
u⊤(Y⊤Y)u=1,v⊤(X⊤X)v=1

u⊤(Y⊤X)v,

which was to be demonstrated. Rewriting in terms of ũ = (Y⊤Y)−1/2u, ṽ = (X⊤X)−1/2u,
the problem becomes

max
∥ũ∥,∥ṽ∥=1

⟨Aṽ, ũ⟩,

where
A = (Y⊤Y)−1/2(Y⊤X)(X⊤X)−1/2.

By Cauchy-Schwarz, we have that

⟨Aṽ, ũ⟩ ≤ ∥Aṽ∥∥ũ∥ = ∥Aṽ∥.
Recall that

max∥ṽ∥=1

√
⟨Aṽ, Aṽ⟩ = max∥ṽ∥=1

√
⟨A⊤Aṽ, ṽ⟩ = σ1,

the leading singular value of A. Hence,

max
∥ũ∥,∥ṽ∥=1

⟨Aṽ, ũ⟩ ≤ σ1.

It suffices to find a pair of vectors on which this maxima is obtained. Writing A =∑min(k,p)
i=1 σiu

∗
i (v

∗
i )

⊤, we see that choosing ṽ = v∗1, ũ = u∗1 yields the maximum. Tracing
back the original definition of ũ and ṽ gives the result.
For the successive maxima, note that the requirement that the linear combination Xv2 be

uncorrelated to Xv1 can be rewritten as

0 = ⟨Xv1,Xv2⟩ = ⟨X⊤Xv1, v2⟩ = ⟨(X⊤X)1/2ṽ1, v2⟩ = ⟨ṽ1, ṽ2⟩.
Similarly for u1 and u2. Hence, the maximization at step 2 can be rewritten as

max
∥ũ∥,∥ṽ∥=1,ũ⊥ũ1,ṽ⊥ṽ1

⟨Aṽ, ũ⟩.

Note that, similar to before, using Cauchy-Schwarz we have

max
∥ũ∥,∥ṽ∥=1,ũ⊥ũ1,ṽ⊥ṽ1

⟨Aṽ, ũ⟩ ≤ max
∥ṽ∥=1,ṽ⊥ṽ1

√
⟨A⊤Aṽ, ṽ⟩.

Again, from Rayleigh quotients, it is known that the above problem has a maximum of σ2.
Hence

max
∥ũ∥,∥ṽ∥=1,ũ⊥ũ1,ṽ⊥ṽ1

⟨Aṽ, ũ⟩ ≤ σ2.

Using the same decomposition of A as before, we see this maximum is obtained when ṽ = v∗2,
and ũ = u∗2. The exact same reasoning repeated min(K, p) times, each time picking up extra
orthogonality conditions, yields the result. ■
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Exercise 3.21. Show that the solution to the reduced-rank regression problem (3.68), with Σ
estimated by Y⊤Y/N , is given by (3.69). Hint: Transform Y to Y∗ := YΣ−1/2, and solve
in terms of the canonical vectors u∗m. Show that Um = Σ−1/2U∗

m, and a generalized inverse
is (U−

m)
⊤Σ1/2.

Solution. This problem will be completed at a later date. ■

Exercise 3.22. Show that the solution in Exercise 3.21 does not change if Σ is estimated
by the more natural quantity (Y −XB̂)⊤(Y −XB̂)/(N − pK).

Solution. This problem will be completed at a later date. ■

Exercise 3.23. Consider a regression problem with all variables and response having mean
zero and standard deviation one. Suppose a;so that each variable has identical absolute
correlation with the response:

1

N
|⟨xj,y⟩| = λ, j = 1, . . . , p.

Let β̂ be the least-squares coefficient of y on X, and let u(α) = αXβ̂ for α ∈ [0, 1] be the
vector that moves a fraction α toward the least squares fit.

(a) Show that

1

N
|⟨xj,y − u(α)⟩| = (1− α)λ, j = 1, . . . , p,

and hence the correlations of each xj with the residuals remain equal in magnitude
as we progress towards u.

(b) Show that these correlations are all equal to

λ(α) =
(1− α)√

(1− α)2 + α(2−α)
N
· RSS

· λ,

and hence they decrease monotonically to zero.
(c) Use these results to show that the LAR algorithm in Section 3.4.4 keeps the correla-

tions tied monotonically decreasing, as claimed in (3.55).

Comment. The notation around equation (3.55) is given as follows. LAR is an iterative
method, and so Ak denotes the set of variables in the model at the beginning of step k, while
βAk

denotes the coefficient vector for these variables at this step. βAk
has length k, and k−1

of these values are nonzero, at the beginning of step k. Defining rk := y−XAk
βAk

, equation
(3.55) is given by

δk = (X⊤
Ak
XAk

)−1X⊤
Ak
rk (3.55)

. As [2] claims, the coefficient profile is then adjusted in this direction by βAk
(α) = βAk

+
α · δk. ■

Solution. (a) Recall that β̂ = (X⊤X)−1X⊤y. From this it follows that

x⊤
j Xβ̂ = x⊤

j X(X⊤X)−1X⊤y (3.7)
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Notice that x⊤
j X is the j-th row of X⊤X. Hence, x⊤

j X(X⊤X)−1 is a 1× p row vector

with a 1 in the jth position, and zeros elsewhere. It follows that x⊤
j X(X⊤X)−1X⊤

is again x⊤
j . Hence,

1

N
|⟨xj,y − u(α)⟩| = |(±λ− α 1

N
x⊤
j y| = | ± λ(1− α)| = λ(1− α),

which was to be demonstrated.
(b) The correlation differs by factors depending on the norms of xj and y − u(α). We

have

Corr(xj,y − u(α)) =
(1− α)λ

∥ 1
N
xj∥∥ 1

N
(y − u(α))∥

=
(1− α)λ

∥ 1
N
(y − u(α))∥

since the xj have standard deviation 1. Simplifying the denominator further, we have

⟨y − u(α),y − u(α)⟩ = ⟨y,y⟩ − 2α⟨y,Xβ̂⟩+ α2⟨Xβ̂,Xβ̂⟩.

But ⟨Xβ̂,Xβ̂⟩ = ⟨X(X⊤X)−1X⊤y,Xβ̂⟩ = ⟨y,Xβ̂⟩. Hence,

∥y − u(α)∥2 = ⟨y,y⟩+ α(α− 2)⟨y,Xβ̂⟩.

Notice from the above that that RSS = ⟨y,y⟩ − ⟨y,Xβ̂⟩.. We add and subtract
α(2− α)RSS. This yields

∥y − u(α)∥2 = ⟨y,y⟩ − α(2− α)⟨y,y⟩+ α(2− α)RSS
= N − α(2− α)N + α(2− α)RSS
= N(1− α)2 + α(2− α)RSS..

Dividing by N and taking the square root yields the result.
(c) Part (b) shows that when α = 0, the correlations are λ, and when α = 1, we have

λ(α) = 0. Moreover, one can inspect dλ
dα

to see the derivative is negative for all
α ∈ [0, 1]. It follows that the correlations are monotonically decreasing, as claimed
in (3.55).

■

Exercise 3.24. LAR directions. Using the notation around equation (3.55) on page 74,
show that the LAR direction makes an equal angle with each of the predictors in Ak.

Solution. For simplicity, let XAk
be denoted by X an N × k matrix, with column xk just

added. Let xj be any one of its columns. Similarly let u = (X⊤X)−1X⊤r, where r is the
residual at the current kth step. Let θj denote the angle between xj and u, and let ϕj be
the angle between r.

cos θj =
⟨xj,u⟩
∥u∥

=
x⊤
j X(X⊤X)−1X⊤r

∥u∥
=

x⊤
j r

∥u∥
=
∥r∥
∥u∥

= cosϕj,

where in the above we used the same reasoning as part (a) in Exercise 3.23 to simplify
x⊤
j X(X⊤X)−1X⊤. By definition, newest predictor xk has equal absolute correlation with

the current residual as all the other predictors, and hence ϕ1 = ϕ2 = · · · = ϕk, up to a
possible phase shift of π radians. From this it follows that θ1 = θ2 = · · · = θj, up to possible
phase shifts of π radians. I.e., negative correlation vs. positive correlation. Hence u makes
an equal angle with all predictors (again, up to a possible phase shift of π radians). ■
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Exercise 3.25. LAR look-ahead (Efron et al., 2004, Sec 2). Starting at the beginning of the
kth step of the LAR algorithm, derive expressions to identify the next variable to enter the
active set at step k + 1, and the value of α at which this occurs (using the notation around
equation (3.55) on page 74).

Solution. For each xj, let cj,1 = ⟨xj, rk⟩, and cj,2 = ⟨xj,uk⟩. For any i, j ∈ Ak, we have by
the previous problem that

ci,1 = ±cj,1, ci,2 = ±cj,2.
Moreover, cj,1 and cj,2 have the same sign. Denote the positive versions of these constants
by c1 and c2 respectively. For any j, the covariance between xj and the residual dependent
on α is given by

⟨xj, rk(α)⟩ = ⟨xj,y − ŷk − αuk⟩ = ⟨xj, rk⟩ − α⟨xj,uk⟩ = c1,j − αc2,j.

To find the α for which xj for j /∈ Ak, has correlation equal to the predictors in the current
set, we simply solve the equation∣∣∣∣ c1,j − αc2,j∥xj∥∥rk(α)∥

∣∣∣∣ = ∣∣∣∣ c1 − αc2
∥xi∗∥∥rk(α)∥

∣∣∣∣ .
for any i∗ ∈ Ak. By the equal variance assumption, we can cancel the denominators. If
c1,j − αc2,j has the same sign as c1 − αc2, we solve for α and obtain

αj =
c1 − c1,j
c2 − c2,j

.

If the signs are flipped, then we have

α′
j =

c1 + c1,j
c2,j + c2

.

We see that the required stepsize is given by

min
j

1Sj
αj + 1Sc

j
α′
j

where 1Sj
denotes the characteristic function of the set Sj = {x ∈ [0, 1] : sign(c1 − xc2) =

sign(c1,j − xc2,j). Moreover, the variable added will be the argument for which the above
minimum is achieved. ■

Exercise 3.26. Forward stepwise regression enters the variable at each step that most reduces
the residual sum-of-squares. LAR adjusts variables that have the most (absolute) correlation
with the current residuals. Show that these two entry criteria are not necessarily the same.
[Hint: let xj.A be the jth variable, linearly adjusted for all the variables currently in the
model. Show that the first criterion amounts to identifying the j for which Cor(xj.A, r) is the
largest in magnitude.]

Solution. Note first that if we can show the hint is true, then we are finished. Indeed, by
the previous problem, LAR adds the index j for which a line of the form cj,1(1 − cj,2α)
intersects the line C1(1−C2α) for the smallest value of α, while Forward stepwise regression
simply computes which xj has the largest correlation with the residual (which is equivalent
to simply choosing the j for which cj,1 above is the largest).
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To see that the hint is true, consider the forward-stepwise regression model. Since xj.A is
”linearly adjusted for all other variables in the model”, this is to say that xj is orthogonalized
with respect to other variables in the model. Hence,

argmaxjCorr(xj.A, r) = argmaxj
⟨r, xj.A⟩
∥r∥xj.A∥

= argmaxj⟨r,
xj.A
∥xj.A∥

⟩.

This is precisely the algorithm derived in Exercise 3.9. This completes the problem. ■

Exercise 3.27. Lasso and LAR: Consider the lasso problem with Lagrange multiplier form:
with L(β) = 1

2

∑
i(yi −

∑
j xijβj)

2, we minimize

L(β) + λ
∑
j

|βj| (3.88)

for fixed λ > 0.

(a) Setting βj = β+
j −β−

j with β+
j , β

−
j ≥ 0, expression 3.88 becomes L(β)+λ

∑
j(β

+
j +β

−
j ).

Show that the Lagrange dual function is

L(β) + λ
∑
j

(β+
j + β−

j )−
∑
j

λ+j β
+
j −

∑
j

λ−j β
−
j (3.89)

and the Karush-Kuhn-Tucker optimality conditions are

∇L(β)j + λ− λ+j = 0

−∇L(β)j + λ− λ−j = 0

λ+j β
+
j = 0

λ−j β
−
j = 0,

along with the non-negativity constraints on the parameters and all the Lagrange
multipliers.

(b) Show that |∇L(β)j| ≤ λ∀j, and that the KKT conditions imply one of the following
three scenarios:

λ = 0 =⇒ ∇L(β)j = 0∀j
β+
j > 0, λ > 0 =⇒ λ+j = 0,∇L(β)j = −λ < 0, β−

j = 0

β−
j > 0, λ > 0 =⇒ λ−j = 0,∇L(β)j = λ > 0, β+

j = 0.

Hence show that for any ”active” predictor having βj ̸= 0, we must have ∇L(β)j = −λ
if βj > 0, and ∇L(β)j = λ if βj < 0. Assuming the predictors are standardized, relate
λ to the correlation between the jth predictor and the current residuals.

(c) Suppose that the set of active predictors is unchanged for λ0 ≥ λ ≥ λ1. Show that
there is a vector γ0 such that

β̂(λ) = β̂(λ0)− (λ− λ0)γ0 (3.90)

Thus the lasso solution path is linear as λ ranges from λ0 to λ1 (Efron et al., 2004;
Rosset and Zhu, 2007).
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Solution. (a) Note that if βj ≤ 0, then βj = −β−
j , while if βj ≥ 0, we have β = β+

j .

Hence, in either case |βj| = β+
j + β−

j . It follows that (3.88) becomes

L(β) + λ
∑
j

(β+
j + β−

j ).

Minimizing this subect to β+
j , β

−
j ≥ 0 by definition gives the lagrange dual function

L(β) + λ
∑
j

(β+
j + β−

j )−
∑
j

λ+j β
+
j −

∑
j

λ−j β
−
j ,

which was to be demonstrated. The first two KKT conditions are obtained by simply
setting the derivative of the above expression taking with respect to β+

j and β−
j equal

to 0 , while the last two come from the slackness conditions. The partial w.r.t. β+
j

yields ∑
i

(yi −
∑
j

xijβj) · xij + λ− λ+j = 0,

which is the first KKT condition since
∑

i(yi −
∑

j xijβj) · xij is indeed the jth

component of ∇L(β). Similarly, since βj = β+
j − β−

j , the derivative of (3.89) w.r.t.

β−
j yields ∑

i

(yi −
∑
j

xijβj) · (−xij) + λ− λ−j = 0,

which is the second KKT conditions. The last two equations are precisely the slack-
ness constraints, since the terms −

∑
j λ

+
j β

+
j and −

∑
j λ

−
j β

−
j in (3.89) come from the

non-negativity constrains on β+
j , β

−
j respectively. This completes part (a).

(b) Adding the first two KKT conditions and solving for λ yields

λ =
λ+j + λ−j

2
.

Now subtracting the second equation from the first yields

∇L(β)j =
λ+j − λ−j

2
.

Hence

|∇L(β)j| ≤
λ+j + λ−j

2
= λ,

by non-negativity of λ−j , λ
+
j . If λ = 0, then the first equation shows ∇L(β)j is non-

negative, while the second shows it is non-positive. Hence, ∇L(β)j = 0 for all j in
this case. If λ > 0 and β+

j > 0, then the third equation shows λ+j = 0, in which case

the first equation shows ∇L(β)j = −λ. This shows that λ−j = 2λ > 0, and hence

that β−
j = 0 from the fourth KKT condition. The exact same reasoning shows the

third implication holds true. The above 3 cases exhaust all situations where βJ ̸= 0.
This shows ∇L(β)j = ±λ, depending on βj. (i.e., βj < 0 when β−

j > 0, and βj > 0

when β+
j > 0.) Writing

L(β) =
1

2
(y −Xβ)⊤(y −Xβ),
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we have that

∇L(β) = 1

2
X⊤(y −Xβ).

I.e,

∇L(β)j =
1

2
x⊤
j (y −Xβ) =

1

2
⟨xj,y −Xβ⟩.

Denoting r = y −Xβ as the current residual, we have

Corr(xj, r) =
⟨xj, r⟩
∥xj∥∥r∥

=
−2sign(βj)λ
∥r∥

,

where we used that the predictors each have variance 1.
(c) Let sign(β) denote the p× 1 vector with entries ±1 or 0, depending on the whether

βj is positive, negative, or 0. Then the equation obtained in the previous part can
be rewritten as

X⊤y −X⊤Xβ = −2λv + v′,

where v,v′ are p×1 vectors with entries vj = sign(βj) for nonzero βj, and 0 otherwise,
while v′

j = 0 for nonzero βj, and x⊤
j y otherwise. Re-arranging and solving for β yields

β(λ) = (X⊤X)−1X⊤y + 2λ(X⊤X)−1v − v′.

Since the active set of predictors does not change from λ0 to λ1, it follows that v
′,v

are constant vectors for λ ∈ [λ1, λ0]. It follows that

β(λ) = β(λ0)− (λ− λ0)(X⊤X)−1(−2v),

which was to be demonstrated.
■

Exercise 3.28. Suppose for a given t in (3.51), the fitted lasso coefficient for variable Xj

is β̂j = a. Suppose we augment our set of variables with an identical copy X∗
j = Xj.

Characterize the effect of this exact collinearity by describing the set of solutions for β̂j and

β̂∗
j , using the same value of t.

Solution. The lasso problem attempts to minimize

1

2

∑
i

(yi − xijβj −
∑
k ̸=j

xikβk)
2 + t|βj|+ t

∑
i ̸=j

|βi|.

Denote the above by L(β), where β = (β1, . . . , βj, . . . , βp)
⊤. This has solution β̂, for which

we are told (β̂)j = a. The corresponding problem with the above collinearity is given by

=
1

2

∑
i

(yi − xij(β∗
j + βj)−

∑
k ̸=j

xikβk)
2 + t(|β∗

j |+ |βj|) + t
∑
i ̸=j

|βi|

=
1

2

∑
i

(yi − xij(β∗
j + βj)−

∑
k ̸=j

xikβk)
2 + t(|β∗

j + βj|) + t
∑
i ̸=j

|βi|+ t(|β∗
j |+ |βj| − |β∗

j + βj|)

= L(β′) + t(|β∗
j |+ |βj| − |β∗

j + βj|),
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where β′ = (β1, . . . , βj + β∗
j , . . . , βp)

⊤. Notice that if we choose a solution β̂′ for the above
which is optimal for L(β′), and satisfies that t(|β∗

j |+ |βj| − |β∗
j +βj|) = 0, then we know this

would be an optimal solution. Indeed,

min
β′

(
L(β′) + t(|β∗

j |+ |βj| − |β∗
j + βj|

)
≥ min

β′
L(β′).

Hence, a solution that minimizes L(β′) and keeps the extra penalty 0 achieves equality.
Choosing βj = β∗

j = a/2, and all other terms the same, certainly minimizes L(β′), since
a/2 + a/2 = a. Moreover, with this choice the extra penalty term above becomes 0. By the
above reasoning, we see that this is an optimal solution. Hence, the solution for βj, and β

∗
j

using the same value of t is given by βj = β∗
j = a/2. This completes the problem. ■

Exercise 3.29. Suppose we run a ridge regression with parameter λ on a single variable X
and get coefficient a. We now include an exact copy X∗ = X, and refit our ridge regression.
Show that both coefficients are identical, and derive their value. Show in general that if m
copies of a variable Xj are included in a ridge regression, their coefficients are all the same.

Solution. Ridge regression has a closed form solution given by

β̂ridge = (X⊤X+ λI)−1X⊤y.

If X1 is simply a N × 1 matrix with response y, this reduces to

a = β̂ridge =
⟨X1,y⟩

λ+ ∥X1∥2
.

Now letting X denote the N × 2 matrix with repeated columns X = [X1,X1], we have that

X⊤X+ λI =

[
∥X1∥2 + λ ∥X1∥2
∥X1∥2 ∥X1∥2 + λ

]
,

and hence

(X⊤X+ λI)−1 =
1

2λ∥X1∥2 + λ2

[
∥X1∥2 + λ −∥X1∥2
−∥X1∥2 ∥X1∥2 + λ

]
,

so we can compute

β̂ridge =
1

2λ∥X1∥2 + λ2

[
∥X1∥2 + λ −∥X1∥2
−∥X1∥2 ∥X1∥2 + λ

] [
⟨X1,y⟩
⟨X1,y⟩

]
=

[
⟨X1,y⟩/(λ+ 2∥X1∥2)
⟨X1,y⟩/(λ+ 2∥X1∥2).

]
The general result for when X is a N ×m matrix with m identical columns can be solved
easily. One can simply check explicitly that

(β̂ridge)i =
1

m∥X1∥2 + λ

minimizes

L(β) := ∥y −X1

(
m∑
i=1

βi

)
∥2 + λ∥β∥2

by checking the first derivative and Hessian. This completes the problem. ■

Exercise 3.30. Consider the elastic-net optimization problem:

min
β
∥y −Xβ∥2 + λ[α∥β∥22 + (1− α)∥β∥1]. (3.91)

Show how one can turn this into a lasso problem, using an augmented version of X and y.
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Solution. Replace y with ỹ, by appending p zeros to the end of y. Additionally, replace X
with X̃, by appending p additional rows of

√
(λα)I. By Exercise 3.12, we can rewrite the

above as

min
β
∥ỹ − X̃β∥2 + λ(1− α)∥β∥1.

This is by definition a lasso problem on (X̃, ỹ) with coefficient λ(1−α). This completes the
problem. ■

4. Solutions to Chapter 4

Exercise 4.1. Show how to solve the generalized eigenvalue problem max a⊤Ba subject to
a⊤Wa = 1 by transforming to a standard eigenvalue problem.

Solution. Define an innerproduct by

⟨a, b⟩W := (W1/2a)⊤(W1/2b).

Notice that ⟨a, a⟩W = a⊤Wa, and

⟨W−1Ba, a⟩W = a⊤W1/2W−1/2Ba = a⊤Ba.

Hence, we can rewrite the problem as

max
⟨a,a⟩W=1

⟨W−1Ba, a⟩W.

It is easy to check that W−1B is indeed self-adjoint w.r.t. the ⟨·, ·⟩W innerproduct. Hence,
the above is indeed a standard eigenvalue problem, and the proof is complete. ■

Exercise 4.2. Suppose we have features x ∈ Rp, a two-class response, with class sizes N1,
N2, and the target coded as −N/N1, N/N2.

(a) Show that the LDA rule classifies to class 2 if

x⊤Σ̂−1(µ̂2 − µ̂1) >
1

2
(µ̂2 + µ̂1)

⊤Σ̂−1(µ̂2 − µ̂1)− log(N2/N1),

and class 1 otherwise.
(b) Consider the minimization of the least squares criterion

N∑
i=1

(yi − β0 − x⊤i β)2. (4.55)

Show that the solution β̂ satisfies[
(N − 2)Σ̂+ Σ̂B

]
β = N(µ̂2 − µ̂1) (4.56)

(after simplification), where ΣB = N1N2

N2 (µ̂2 − µ̂1)(µ̂2 − µ̂1)
⊤.

(c) Hence show that ΣBβ is in the direction (µ̂2 − µ̂1) and thus

β̂ ∝ Σ̂−1(µ̂2 − µ̂1). (4.57)

Therefore the least-squares regression coefficient is identical to the LDA coefficient,
up to a scalar multiple.

(d) Show that this result holds for any (distinct) coding of the two classes.
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(e) Find the solution β̂0 (up to the same scalar multiple as in (c), and hence the predicted

value f̂(x) = β̂0 + x⊤β̂). Consider the following rule: classify to class 2 if f̂(x) > 0
and class 1 otherwise. Show that this is not the same as the LDA rule unless the
classes have equal numbers of observations.

Solution. (a) The LDA rule classifies to class 2 if and only if

log
Pr(G = 1|X = x)

Pr(G = 2| = x)
< 0.

The above can be simplified, using estimates for the mean, covariance, and priors, to

log
N1

N2

− 1

2
(µ̂1 + µ̂2)

⊤Σ̂−1(µ̂1 − µ̂2) + x⊤Σ̂−1(µ̂1 − µ̂2) < 0.

Adding x⊤Σ̂−1(µ̂2 − µ̂1) to both sides, and using that log(N1/N2) = − log(N2/N1)
yields the result.

(b) We first simplify the inside (N−2)Σ̂+Nσ̂B. Denote by xi the p×1 vector associated
with the i-th trial. We have

(N − 2)Σ̂+Nσ̂B =
∑
xi∈G1

xix
⊤
i +N1µ̂1µ̂

⊤
1 −

∑
i∈G1

(µ̂1x
⊤
i + xiµ̂

⊤
1 )

+
∑
xi∈G2

xix
⊤
i +N2µ̂2µ̂

⊤
2 −

∑
i∈G2

(µ̂2x
⊤
i + xiµ̂

⊤
2 )

+
N1N2

N

[
µ̂1µ̂

⊤
1 + µ̂2µ̂

⊤
2 − (µ̂1µ̂

⊤
2 + µ̂2µ̂

⊤
1 )
]

=
N∑
i=1

xix
⊤
i −N1µ̂1µ̂

⊤
1 −N2µ̂2µ̂

⊤
2

+
N1N2

N

[
µ̂1µ̂

⊤
1 + µ̂2µ̂

⊤
2 − (µ̂1µ̂

⊤
2 + µ̂2µ̂

⊤
1 )
]
.

Using that −Ni +
N1N2

N
= −N2

i /N , we obtain that the above simplifies to

=
N∑
i=1

xix
⊤
i −

1

N
(N1µ̂1 +N2µ̂2)(N1µ̂1 +N2µ̂2)

⊤

=
N∑
i=1

xix
⊤
i −

1

N

(
N∑
i=1

xi

)(
N∑
i=1

x⊤i

)
.

Computing X⊤X, the (p+ 1)× (p+ 1) matrix, in terms of the p× 1 vectors xi, and
using that X⊤Xβ = X⊤y, it is easy to check that[

N∑
i=1

xix
⊤
i −

1

N

(
N∑
i=1

xi

)(
N∑
i=1

x⊤i

)]
β̂ =

N∑
i=1

yixi −
1

N

(
N∑
i=1

xi

)(
N∑
i=1

yi

)
,
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where β̂ denotes the last p components of the least squares solution vector. But∑N
i=1 yi = N1N/N1 −N2N/N2 = 0, so the second term vanishes. Hence,[

(N − 2)Σ̂+Nσ̂B

]
β̂ =

N∑
i=1

yixi = N
∑
xi∈G2

xi/N2 +N
∑
xi∈G1

xi/N1

= N(µ̂2 − µ̂1).

This completes the problem.
(c) Notice that (µ̂2 − µ̂1)

⊤β̂ is a scalar, so

Σ̂Bβ̂ =
N1N2⟨(µ̂2 − µ̂1), β̂⟩

N2
(µ̂2 − µ̂1) := C(µ̂2 − µ̂1).

It follows from (4.56) that

Σ̂β̂ =
(N − C)
N − 2

(µ̂2 − µ̂1),

and hence

β̂ ∝ Σ̂−1(µ̂2 − µ̂1),

which was to be demonstrated.
(d) It suffices to show that an equation like (4.55) holds, regardless of the encoding.

Recall that we had the left-hand-side simplified to

N∑
i=1

yixi −
1

N

(
N∑
i=1

xi

)(
N∑
i=1

yi

)
without using any information about the target coding. Denote by c1 the target
coded value for the first class, and c2 the target coded value for the second class. The
above can be rewritten

N∑
i=1

yixi −
1

N

(
N∑
i=1

xi

)(
N∑
i=1

yi

)
= c1

∑
xi∈G1

xi + c2
∑
xi∈G2

xi −
c1N1 + c2N2

N

(
N∑
i=1

xi

)

= c1N1µ̂1 + c2N2µ̂2 −
c1N1 + c2N2

N
(N1µ̂1 +N2µ̂2).

Simplifying the above yields

N1N2(c2 − c1)
N

(µ̂2 − µ̂1) .

Replacing N in (4.55) with N1N2(c2−c1)
N

holds true in general. Hence, so too does the
proportionality result. This completes the problem.

(e) Notice that

X⊤X =

[
N

∑N
i=1 x

⊤
i∑N

i=1 xi
∑N

i=1 xix
⊤
i

]
since the first column of X is all ones. Since

X⊤X

[
β̂0
β̂

]
= X⊤y,
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as this is the least-squares solution, we have from the first row of the above equation
that

Nβ̂0 +
N∑
i=1

x⊤i β̂ =
N∑
i=1

yi.

Notice that the right-hand-side of the above is 0. Hence,

β̂0 =
−1
N

N∑
i=1

x⊤i β̂.

Hence, we have that

f̂(x) =

(
−1
N

N∑
i=1

x⊤i + x⊤

)
β̂.

To investigate the difference of this expression from the LDA rule, we will rewrite
the above as follows:(
−1
N

N∑
i=1

x⊤i + x⊤

)
β̂ =

−C
N

(N1µ̂1 +N2µ̂2)
⊤Σ̂−1(µ̂2 − µ̂1) + Cx⊤Σ̂−1(µ̂2 − µ̂1),

where C > 0 is the proportionality constant from earlier parts. Since the constant
above does not affect the sign, classifying to class 2 iff f̂(x) > 0, or iff f̂(x)/C > 0 is
the same rule. Hence, this is equivalent to classifying to class 2 if and only if

x⊤Σ̂−1(µ̂2 − µ̂1) >
1

N
(N1µ̂1 +N2µ̂2)

⊤Σ̂−1(µ̂2 − µ̂1).

From part (a), notice that if N1 = N2 = N/2, then the log term in (4.55) vanishes,
and N/2 can be factored out of the right hand term in the equation above. In this
case, one can see that the classification rules are the same. Otherwise, there is an
additional log term in LDA, and the term 1

N
(N1µ̂1 + N2µ̂2)

⊤Σ̂−1(µ̂2 − µ̂1) does not

simplify to 1
2
(µ̂1 + µ̂2)

⊤Σ̂−1(µ̂2 − µ̂1). Hence, when N1 ̸= N2, the classification rules
are not necessarily the same.

■

Exercise 4.3. Suppose we transform the original predictors X to Ŷ via linear regression. In
detail, let Ŷ = X(X⊤X)−1X⊤Y = XB̂, where Y is the indicator response matrix. Similarly

for any input x ∈ Rp, we can a transformed vector ŷ = B̂⊤x ∈ RK. Show that LDA using
Ŷ is equivalent to LDA in the original space.

Solution. Notice that under the augmented data, the following tranformations occur:

x⊤ 7→ x⊤B̂

µ̂k 7→ B̂⊤µ̂k

Σ̂ 7→ B̂⊤Σ̂B̂

We remark that for the transformed version of Σ to be invertible, we require that K ≤ p,
since B̂ is p×K. We also note that B̂ has rank K. Under these transformations, the formula
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for δk becomes

x⊤B̂(B̂⊤Σ̂B̂)−1B̂⊤µ̂k −
1

2
µ̂⊤
k B̂(B̂⊤Σ̂B̂)−1B̂⊤µ̂k + log πk.

Simplifying into inner-product form yields

⟨B̂(B̂⊤Σ̂B̂)−1B̂⊤µ̂k, x⟩ − 1/2⟨B̂(B̂⊤Σ̂B̂)−1B̂⊤µ̂k, µ̂k⟩+ log πk

A very lengthy exercise in matrix algebra shows that this is equal to the standard discriminant
for LDA. Some key steps in the derivation include writing Σ̂ as a product of matrices:

Σ̂ =
1

N −K
X⊤ (I−YN−1

K Y⊤)X,
where NK = diag (N1, . . . , NK). Deriving the above uses the fact that

µ̂k = X⊤yk,

where yk is the kth column of Y, as well as the fact that Y⊤Y = NK . At this point,
(B̂⊤Σ̂B̂)−1 can be computed in a slightly more explicit way. In particular, using the definition

of B̂, some X cancellation occurs, and we see that

(B̂⊤Σ̂B̂)−1 = (N −K)
(
I−N−1

K A
)−1

A−1,

where A is the self-adjoint matrix A = B̂⊤X⊤Y. Another simple but lengthy computation
then reveals that

B̂(B̂⊤Σ̂B̂)−1B̂X⊤Y = Σ̂−1X⊤Y.

The i-th column of the above matrix equality shows that each of the first two terms above
are identical to the standard LDA terms, since µ̂k = X⊤yk. Since the priors πk are unaffected
by the transformations involving B̂, this completes the proof. ■

Exercise 4.4. Consider the multilogit model with K classes (4.17). Let β be the (p+1)(K−1)
vector consisting of all the coefficients. Define a suitably enlarged version of the input vector
x to accommodate this vectorized coefficient matrix. Derive the Newton-Ralphson algorithm
for maximizing the multinomial log-likelihood, and describe how you would implement this
algorithm.

Solution. The (p+ 1)(K − 1) coefficient vector β is given by

β =



β10
β1
β20
β2
...

β(K−1)0

βK−1


where each βi is itself a vector of length p. Of course, enlarging x by adding a constant to
account for the intercept, then stacking (K − 1) of these ontop of each other allows for this
enlarged x to be multiplied by β. Defining Yk to be a (p+1)(K−1)×(p+1)(K−1) diagonal



40 PEOPLES

matrix with 1’s along the diagonal entries k(p + 1) − p, k(p + 1) − p + 1, . . . , k(p + 1) and
zeros elsewhere. With these definitions, defining X to be the enlarged version of x, we have

β⊤YkX = (βk0 β
⊤
k )

(
1
x

)
.

We can use this to write the log likelihood in a convenient way, and then derive the Newton-
Ralphson algorithm in this setting. In particular, recall that the log likelihood for K classes
is given by

ℓ(β) =
N∑
i=1

[
K−1∑
j=1

χij log pj(xi; β) + χiK log(pK(xi; β))

]
,

where χij here is 1 if yi is class j and zero otherwise. Recall that

pj(xi; β) =
exp(β⊤

j xi)

1 +
∑K−1

ℓ=1 exp(β⊤
ℓ xi)

, j = 1, . . . , K − 1

pK(xi; β) =
1

1 +
∑K−1

ℓ=1 exp(β⊤
ℓ xi)

.

Here, a xi is understood to have a 1 appended to the beginning, and βj is a vector of
coefficients corresponding to class j. Using this, ℓ(β) can be simplified to

ℓ(β) =
N∑
i=1

[
K−1∑
j=1

[
χijβ

⊤
j xi − χij log

(
1 +

K−1∑
ℓ=1

exp(β⊤
ℓ xi)

)]
− χiK log(1 +

K−1∑
ℓ=1

exp(β⊤
ℓ xi))

]

=
N∑
i=1

[
K−1∑
j=1

χijβ
⊤
j xi − log(1 +

K−1∑
ℓ=1

exp(β⊤
ℓ xi))

]

since
∑

j χij = 1. Let Y
(i)
j be equal to Yj if the class of yi is j, and 0 otherwise. We can then

rewrite the above in terms of Yj, Y
(i)
j , Xi, and β:

ℓ(β) =
N∑
i=1

[
K−1∑
j=1

β⊤Y
(i)
j Xi − log

(
1 +

K−1∑
ℓ=1

exp
(
β⊤YℓXi

))]
From this we can see that

∂ℓ

∂β
=

N∑
i=1

K−1∑
j=1

Y
(i)
j Xi −

∑K−1
ℓ=1 exp

(
β⊤YℓXi

)
YℓXi(

1 +
∑K−1

ℓ=1 exp (β⊤YℓXi)
)


=
N∑
i=1

K−1∑
j=1

Y (i)
j Xi −

exp
(
β⊤YjXi

)
YjXi(

1 +
∑K−1

ℓ=1 exp (β⊤YℓXi)
)


The Hessian is then given by

∂2ℓ

∂β∂β⊤ =
N∑
i=1

K−1∑
j=1

exp (β⊤YjXi

)∑K−1
ℓ=1 exp

(
β⊤YℓXi

)
X⊤

i Y
⊤
ℓ YjXi(

1 +
∑K−1

ℓ=1 exp (β⊤YℓXi)
)2 −

exp
(
β⊤YjXi

)
X⊤

i Y
⊤
j YjXi(

1 +
∑K−1

ℓ=1 exp (β⊤YℓXi)
)
 .
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Since Yj and Yℓ are diagonal with 1’s along the diagonal in distinct positions when ℓ ̸= j
and zeros otherwise, its easy to see that YℓYj = δℓjYj. Hence,

∂2ℓ

∂β∂β⊤ =
N∑
i=1

K−1∑
j=1

exp (β⊤YjXi

)
exp

(
β⊤YjXi

)
X⊤

i Y
⊤
j YjXi(

1 +
∑K−1

ℓ=1 exp (β⊤YℓXi)
)2 −

exp
(
β⊤YjXi

)
X⊤

i Y
⊤
j YjXi(

1 +
∑K−1

ℓ=1 exp (β⊤YℓXi)
)
 .

From the above formulas, we can compute the Hessian given data X and a fixed β, and we
can compute the gradient ∂ℓ

∂β
given data X, labels y, and fixed β. The Newton-Ralphson

algorithm is given by the update rule

β(k+1) = β(k) −
(

∂2ℓ

∂β∂β⊤

)−1
∂ℓ

∂β
.

Typically, one can choose β(0) = 0⃗. Here is some psuedo-code for implementing the algorithm.

initialize beta

initialize error

initialize tol

while error > tol:

beta_old = beta

H = return_Hessian(beta, X)

g = return_gradient(beta, X, y)

beta_new = beta_old - H^(-1)g

error = norm(beta_new - beta_old)

beta = beta_new

■

Exercise 4.5. Consider a two class logistic regression problem with x ∈ R. Characterize
the maximum likelihood estimates of the slope and intercept parameter if the sample xi for
the two classes are separated by a point x0 ∈ R. Generalize this result to (a) x ∈ Rp and (b)
more than two classes.

Solution. Let class 1, encoded by yi = 1, denote the class corresponding to xi > x0. The log
likelihood for two classes with x ∈ R can be written

ℓ(β) =
∑
i

[yi(β0 + βxi)− log(1 + exp (β0 + βx))]

=
∑
xi>x0

[β0 + βxi − log(1 + exp (β0 + βxi)] +
∑
xi<x0

[− log(1 + exp (β0 + βxi))]

The maximum is bounded below by a particular choice of β0 = −βx0. Hence,

max
β

ℓ(β) ≥
∑
xi>x0

[β(xi − x0)− log(1 + exp (β(xi − x0))] +
∑
xi<x0

[− log(1 + exp (β(xi − x0)))] .

Notice that in the second term, the argument on the exponential is negative. Hence, there
is sufficiently large β such that each term in the second summand is bounded below by
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− log(2). Hence,

max
β

ℓ(β) ≥
∑
xi>x0

[β(xi − x0)− log(1 + exp (β(xi − x0))]−N2 log(2).

where N2 is the number of elements in class 2. Its clear that each term in the sum of the
above function diverges to +∞ as β → +∞, since

∂

∂β
[Cβ − log(1 + exp (Cβ)] = C

(
1− exp (Cβ)

1 + exp (Cβ)

)
> 0

for any β > 0, provided that C > 0 is some fixed constant independent of β. Hence,
the maximum likelihood estimates in this case do not exist, as ℓ(β) has no global or local
maximum.

(a) Now suppose xi ∈ Rp (without a 1 appended), and suppose there is x0 ∈ Rp, and
a unit vector v ∈ Rp such that all elements xi in class 1 satisfy v⊤xi > v⊤x0, and
all elements xi in class 2 satisfy v⊤xi < v⊤x0 (I believe this is the intended way to
generalize the assumption). The log likelihood is given by

ℓ(β) =
∑
i

[
yi(β0 + β⊤xi)− log(1 + exp

(
β0 + β⊤xi

)
)
]

=
∑

{xi:β⊤(xi−x0)>0}

[
β0 + β⊤xi − log(1 + exp

(
β0 + β⊤xi

)]
+

∑
{xi:β⊤(xi−x0)<0}

[
− log(1 + exp

(
β0 + β⊤xi

)
)
]

Again, choosing β0 = −β⊤x0, the exact same argument as before shows the above
diverges as ∥β∥ → ∞. Of course, the slight difference is that here the limit is taken
as a→∞, where β = av.

(b) For K ≥ 3, suppose there is v and x0 ∈ Rp such that v⊤xi > v⊤x0 for any xi with
label in class 1, 2, . . . , K−1, but v⊤xi < v⊤x0 for any xi with label in class K. Then
the log likelihood is

ℓ(β) =
∑
i

[
K−1∑
j=1

χij(β0j + β⊤
j xi)− log(1 + exp

(
β0K + β⊤

Kxi
)
)

]

where β0j is the intercept for the j-th class, βj is the p vector of coefficients for the j-th
class, and χij is 1 if yi is in class j and zero otherwise. Certainly maxβ ℓ(β) is bounded
above by a particular choice of β for which all intercepts are equal: β0 := β01 = β02 =
· · · = β0K , and all feature coefficients are equal: β := β1 = β2 = · · · = βK . Hence,

max
β

ℓ(β) ≥
∑
i

[
K−1∑
j=1

χij(β0 + β⊤xi)− log(1 + exp
(
β0 + β⊤xi

)
)

]
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If yi is in class 1, 2, . . . , K − 1, then
∑

j χij = 1. If yi is in class j, then
∑

j χij = 0.
Hence, the above becomes

max
β

ℓ(β) ≥
∑

{xi:yiin class 1,...,K−1}

[
(β0 + β⊤xi)− log(1 + exp

(
β0 + β⊤xi

)
)
]

+
∑

{xi:yi in class K}

[
− log(1 + exp

(
β0 + β⊤xi

)
)
]

Choosing β0 = −β⊤x0,

max
β

ℓ(β) ≥
∑

{xi:yiin class 1,...,K−1}

[
β⊤(xi − x0)− log(1 + exp

(
β⊤(xi − x0)

)
)
]

+
∑

{xi:yi in class K}

[
− log(1 + exp

(
β⊤(xi − x0)

)
)
]

It then becomes the same argument as before, choosing β = av and taking a → ∞.
The second term is bounded above by −NK log(2), and each term in the first sum is
strictly increasing as β increases. This completes the problem.

■

Exercise 4.6. Suppose we have N points Xi in Rp in general position, with class labels yi ∈
{−1, 1}. Prove that the perceptron learning algorithm converges to a separating hyperplane
in a finite number of steps:

(a) Denote a hyperplane by f(x) = β⊤
1 x+β0 = 0, or in more compact notation β⊤x∗ = 0

where x∗ = (x, 1) and β = (β1, β0). Let zi = x∗i /∥x∗i ∥. Show that the separability
implies the existence of a βsep such that yiβ

⊤
sepzi ≥ 1 for all i.

(b) Given a current βold, the perceptron algorithm identifies a point zi that is misclassified,
and produces the update βnew ← βold+yizi. Show that ∥βnew−βsep∥2 ≤ ∥βold−βsep∥2−
1, and hence that the algorithm converges to a separating hyperplane in no more than
∥βstart − βsep∥2 steps.

Solution. (a) Suppose that the classes are separable. By definition, there exists a vector
β such that for each xi with label 1 we have β⊤x∗i > ci∥x∗i ∥ > 0, and for each xi with
label −1 we have β⊤x∗i < ∥x∗i ∥di < 0. Let D denote the maximum of all di’s, (i.e.,
negative number closest to 0) and C denote the minimum of all c′is. Note that

β⊤x∗i ≥ C∥x∗i ∥ > 0 ∀i : yi = 1

β⊤x∗i ≤ D∥x∗i ∥ < 0 ∀i : yi = −1.

Let A = min{C, |D|}. Then clearly

β⊤x∗i ≥ A∥x∗i ∥ > 0 ∀i : yi = 1

β⊤x∗i ≤ −A∥x∗i ∥ < 0 ∀i : yi = −1.

Let βsep = 1
A
β. Then we have

β⊤
sepx

∗
i ≥ ∥x∗i ∥ > 0 ∀i : yi = 1

β⊤
sepx

∗
i ≤ −∥x∗i ∥ < 0 ∀i : yi = −1.
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This is of course equivalent to

yiβ
⊤
sepzi ≥ 1 ∀i : yi = 1

yiβ
⊤
sepzi ≥ 1 ∀i : yi = −1,

which was to be demonstrated.
(b) Notice that

∥βnew − βsep∥2 = ∥βold + yizi − βsep∥2

= ⟨βold − βsep, βold − βsep⟩+ 2⟨βold − βsep, yizi⟩+ ⟨yizi, yizi⟩.

= ∥βold − βsep∥2 + 2⟨βold, yizi⟩ − 2⟨βsep, yizi⟩+
1

∥x∗i ∥2
∥x∗i ∥2.

By the previous part, −2⟨βsep, yizi⟩ ≤ −2. Since βold by definition misclassified zi,
2yi⟨βold, zi⟩ will always be negative, since yi and ⟨βold, zi⟩ have opposite signs. Putting
this together,

∥βnew − βsep∥2 ≤ ∥βold − βsep∥2 − 0− 2 + 1,

which was to be demonstrated. Hence, after ∥βstart − βsep∥2, we have

∥βnewest − βsep∥2 ≤ ∥βnewest−1 − βsep∥2 − 1

≤ ∥βnewest−2 − βsep∥2 − 2

≤ · · · ≤
≤ ∥βstart − βsep∥2 − ∥βstart − βsep∥2. (4.1)

Of course, this assumes that at each step the guess is further 1 distance squared
away from βsep. Once ∥βnewest − βsep∥2 < 1 (which, by the above, occurs in less than
∥βstart − βsep∥2 steps), no points are misclassified. Indeed, if there were misclassified
points, then one could apply the above to find βnewest+1 such that ∥βnewest+1−βsep∥2 ≤
∥βnewest − βsep∥2 − 1 < 0, a clear contradiction. This completes the problem.

■

Exercise 4.7. Consider the criterion

D∗(β, β0) = −
N∑
i=1

yi(x
⊤
i β + β0),

a generalization of (4.41) where we sum over all the observations. Consider minimizing D∗

subject to ∥β∥ = 1. Describe the criterion in words. Does it solve the optimal separating
hyperplane problem?

Solution. In words, yi(x
⊤
i β + β0) is related to the distance of xi to the hyperplane. If xi is

correctly classified, then for either class yi(x
⊤
i β+ β0) is positive. Hence, the above subtracts

the distance to the hyperplane of correctly classified points, and adds the distance of mis-
classified points. The lagrangian associated to this problem is

L(β, λ) = −
N∑
i=1

yi(x
⊤
i β + β0) +

λ

2
(∥β∥2 − 1)
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Writing the sufficient condition ∂L
∂β

= 0 and assuming that the covariates are linearly inde-

pendent reveals that λ ̸= 0 and

β =
1

λ

N∑
i=1

yixi.

According to the condition (4.53) for the solution to the optimal hyperplane problem, we see
that if x⊤j β + β0 ̸= 1 for some j, then xj does not contribute to β. However, the solution to

the problem of minimizing D∗ is a linear combination of all yixi, each with coefficient 1
λ
. This

shows that minimizing D∗ does not solve the optimal separating hyperplane problem. ■

Exercise 4.8. Consider the multivariate Gaussian model X|G = k ∼ N (µk,Σ), with the
additional restriction that rank{µk}Kk=1 = L < max{K− 1, p}. Derive the constrained MLEs
for the µk and Σ. Show that the Bayes classification rule is equivalent to classifying in the
reduced subspce computed by LDA.

Solution. This seems to be quite an involved problem, and is best solved by reading Appendix
I of the paper [1], and working out all details. I hope to revisit this problem soon. ■

Exercise 4.9. Write a computer program to perform a quadratic discriminant analysis by
fitting a separate Gaussian model per class. Try it out on the vowel data, and compute the
misclassification error for the test data. The data can be found in the book website www-
stat.stanford.edu/ElemStatLearn.

Solution. The following python code generates predictions using QDA and plots the confu-
sion matrices for each class:

import pandas as pd

data_train = pd.read_csv(’data/train.csv’)

data_test = pd.read_csv(’data/test.csv’)

X_train = data_train.iloc[:,2:].copy()

y_train = data_train.iloc[:,1].copy()

X_test = data_test.iloc[:,2:].copy()

y_test = data_test.iloc[:,1].copy()

from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

from sklearn.metrics import multilabel_confusion_matrix

qda = QuadraticDiscriminantAnalysis()

qda.fit(X_train, y_train)

y_preds_proba = qda.predict_proba(X_test)

y_preds = qda.predict(X_test)

conf = multilabel_confusion_matrix(y_test,y_preds)

import seaborn as sns

import matplotlib.pyplot as plt

for i in range(0,11):

fig, ax = plt.subplots()
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Figure 2. Displays confusion matrices for each class using QDA on the vowel
data, as specified in Exercise 4.9.

ax = sns.heatmap(conf[10,:,:], annot = True,cmap=’Blues’, fmt=’g’)

ax.set_title(f"class {i+1}")

plt.show()

Figure 2 displays the confusion matrices for each class. We compute mean accuracy over
each flass via the following code:

import numpy as np

accuracy = []

for i in range(0,11):

accuracy.append((conf[i,:,:][0,0] + conf[i,:,:][1,1])/conf[i,:,:].sum())
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np.asarray(accuracy).mean()

This reveals an average accuracy of about 93.4%. ■

5. Solutions to Chapter 5

6. Solutions to Chapter 6

7. Solutions to Chapter 7
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