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Introduction
Diffusion Maps [1] leverages an asymptotic ex-
pansion of the integral operator

Kϵf(x) :=

∫
M

exp
(
∥x− y∥2/4ϵ

)
f(y)dV (y)

to estimate the Laplace-Beltrami operator on a
manifold without boundary:

∆f(x) = Lϵf(x) +O(ϵ)

where Lϵf = ϵ−1(f − 1
Kϵ1

Kϵf).

Given a dataset of points sampled from an un-
known manifold, discretizing integrals to sums
results in a matrix Lϵ,n estimating the Laplace-
Beltrami operator.

Motivation
The key asymptotic expansion blows up near
the boundary:

Kϵf(x) = mϵ
0(x)f(x0)+

√
ϵmϵ

1(x)
∂f

∂ν
(x0)+O(ϵ)

Observation Diffusion Maps applied to manifolds
with boundary estimates the Neumann Laplacian.

Question Can Diffusion maps be modified to esti-
mate the Dirichlet Laplacian?

∆f = λf, f |∂M = 0

Theoretical starting point:

Theorem [3] The diffusion maps estimator is
weakly consistent on manifolds with boundary:

⟨Lϵf, g⟩ = ⟨∆f, g⟩+O(
√
ϵ)

Symmetric Formulation
We can define a symmetrized version of the es-
timator Lϵ:

Lsym
ϵ =

1

2
(Lϵ + L∗

ϵ )

Corollary L
sym
ϵ is consistent on manifolds with

boundary:

⟨Lsym
ϵ f, g⟩ = ⟨∆f, g⟩+O(

√
ϵ)

Truncated Graph Laplacian
The Truncated Graph Laplacian (TGL) is the re-
striction of Lsym

ϵ to points sufficiently far away
from the boundary:

Lsym
ϵ =

[ Mϵγ M\Mϵγ

Mϵγ L
tgl
ϵ ∗

M\Mϵγ ∗ ∗

]

The weak truncation error is small on Dirichlet
functions:

⟨(Kϵ −K tgl
ϵ )f, f⟩ = O(ϵ3γ)

Spectral Convergence
Theorem Let λi and λϵ,n

i denote the i-th Dirichlet-
eigenvalues of ∆ and L

tgl
ϵ , respectively. Then with

probability approaching 1 as n → ∞,

λϵ,n
i → λi.

Convergence Rate The rate of convergence is
given by

|λi − λϵ,n
i | = O

(
√
ϵ, ϵ3γ−1,

√
log(n)

ϵd/2+1
√
n

)
= bias + truncation error
+ discretization error

Theorem For any eigenvector u of Ltgl
ϵ with eigen-

value λϵ,n
i , there is a Dirichlet eigenfunction f of ∆

with eigenvalue λi such that ∥f − u∥L2(µn) is dom-
inated by the same rate above.

Numerical Results
Semicircle. Shown below are estimated eigenvectors for the semicircle using 10,000 data points
sampled from a uniform distribution in the instrinsic coordinates (left). Also shown is convergence
as n → ∞ of the mean of relative eigenvalue error (blue) and mean of eigenvector MSE (red) for
uniform random data (middle) and well-sampled data (right). Means are taken over the first 10
eigenmodes. For random data, 10 trials were performed.

Eigenmode Comparison | n = 10,000
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Convergence as n → ∞
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Overall, Dirichlet eigenfunctions are well approximated by the TGL method, and observed conver-
gence is slightly faster than the predicted rate.

Semitorus. Shown below is the 20th eigenvector of the Dirichlet Laplacian obtained via semi-
analytic methods (left) and using TGL method with 642 data points sampled from a uniform distri-
bution in the instrinsic coordinates (middle). Also shown is the convergence rate as n → ∞ using
the same metrics as for the semicircle (right).

20th Eigenmode | n = 642
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Convergence as n → ∞
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Visually, we see that even high eigenmodes can be estimated using the TGL method. We also see
the empirical convergence rate is slightly faster than predicted, even for random data.
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Conclusions
Presented are the first results achieving spectral convergence to the Dirichlet Laplacian on an un-
known manifold with boundary. To obtain such results, we introduced a novel estimator which has
numerous theoretical advantages. Empirical findings further support the validity of this estimator.
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